Генератор тока как работает: Принцип работы электрического генератора

Содержание

Принцип работы синхронного генератора

Синхронный генератор. Устройство генератора и принцип действия

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию.

К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах).

Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью — в нее подключены иные генераторы.

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей.

Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции.

Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС).

ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу.

В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора.

Результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии.

Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов.

В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Принцип действия синхронного трёхфазного генератора

Универсальный синхронный трёхфазный генератор представлен в виде специфического механизма переменного тока, который призван преобразовывать определённый тип энергии в электричество.

Именно этот агрегат отвечает за работоспособность солнечных батарей, электростатических машин, а также гальванических элементов.

На практике использование этих устройств определяется исключительно техническими характеристиками.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 3 из 5.

Принцип работы и схема генератора переменного тока

Представить себе жизнь современного человека без электричества крайне сложно. Даже те люди, которые отдалены от цифровых технологий и Интернета, все равно пользуются бытовыми приборами, которые работают на электрической энергии. Часто для ее производства используют генератор переменного тока, ведь именно ток такого поля используется всеми бытовыми установками, подается во все квартиры и частные дома. Упомянутый выше прибор был изобретен уже достаточно давно, но он до сих пор не утратил своей популярности и применяется во многих сферах жизни людей. Про устройство генератора и принцип его работы рассказано в данной статье.

Что такое генератор переменного тока, и кто его изобрел

Генератор переменного тока представляет собой специализированную электрическую установку, которая преобразует механическую энергию в электрическую. Последняя обладает переменной характеристикой. Само превращение основано на механическом вращении катушки из проволоки внутри магнитного поля.

Демонстрация рассматриваемого прибора в разрезе

К сведению! Практически все современные генераторы используют для получения электроэнергии вращающееся магнитное поле, а не катушку.

Как уже было сказано, электрический ток вырабатывается не только при механическом движении катушки в поле магнита, но и тогда, когда силовые линии магнита, находящегося во вращательном движении, пересекают витки катушки.

Таким образом появляющиеся электроны начинают свое движение к положительному полюсу магнита, а сам электроток протекает от плюсового полюса к минусовому.

Ток индуцируется в проводнике (катушке). Его течение отталкивает магнит, когда рамка катушки подходит к нему, и отталкивает его, когда рамка удаляется. Его говорить проще, то ток каждый раз меняет свою ориентацию относительно полюсов магнита. Это и вызывает такое явление, как переменный электрический ток.

Демонстрация прибора с помощью простого магнита и контура

Данное приспособление появилось еще в 1832 г. благодаря стараниям Н. Тесла. Именно тогда был создал самый первый однофазный синхронный генератор переменного электрического тока. Самые первые установки производили только постоянный ток, а рассматриваемый генератор переменной характеристики некоторое время не мог найти своего практического применения. Это длилось не долго, так как люди быстро поняли, что переменный ток использовать гораздо практичнее, чем постоянный.

Обратите внимание! Преимущество новой технологии заключалось в том, что такой электроток было легче выработать, а на обслуживание приборов уходило в разы меньше времени и ресурсов, чем на аналоги, работающие на постоянном токе.

Именно благодаря переменному току и его генератору смогли появиться на свет такие электроприборы, как радиоприемник, магнитофон и другие более поздние автоматические и электротехнические установки, без которых представить жизнь современного человека нельзя.

Использование графика для демонстрации переменного и постоянного электротоков

Характеристики генератора переменного тока

Основные технические характеристики генератора переменного тока: внешняя, скоростная регулировочная и токоскоростная. Внешняя характеристика определяется, как зависимость напряженности прибора от генерируемого им тока. Она является константой и может быть определена в процессе самостоятельного и независимого возбуждения.

Скоростная регулировочная характеристика чаще всего высчитывается исходя из нескольких величин электротока нагрузки. Самое маленькое значение возбуждения находится при нагрузочном токе, равном нулю (частота вращений при этом максимальная).

Последняя токоскоростная характеристика определяется как одна из самых важных при выборе или создании генератора. Практически все новые генераторы могут самостоятельно ограничивать свой максимальный ток.

Обратите внимание! Делается это для того, чтобы частота вращения роторов не увеличивалось до частоты индуцированного стартера.

Простой индукционный генератор для использования дома и на предприятии

Принцип работы генератора

Пришло время рассмотреть устройство генератора перемененного тока и принцип его действия. Он заключается в том, что в электроустановке используют специальную систему, которая при функционировании производит магнитный поток большой мощности.

За основу взято два сердечника, изготовленных из электротехнической стали. Пазы одного сердечника предполагают размещение обмотки, которая отвечает за генерацию потока магнитных волн. Второй же используется для индукции электродвижущей силы.

Обычно сердечник, который расположен внутри, находится в горизонтальном или вертикальном положении и вращается по соответствующим орбитам. Его называют ротором. Второй же сердечник, называемый статором, как понятно из его названия, остается в неподвижном состоянии. Чем меньшее расстояние будет между этими элементами, тем больше вырастет индуктивность магнитного потока. Далее рассмотрены назначение устройства и работа генератора переменного тока.

Рассмотрение строения электрогенератора на практике

Назначение генератора переменного тока

Переменные генераторы тока применяют уже достаточно давно. За последние годы сфера применения стала еще более обширной. Используются такие приборы не только в промышленных, но и в бытовых целях. Производственные электроустановки представляют собой самый выгодный вариант для генерации электроэнергии, используемой на заводах и предприятиях, учебных учреждениях, торговых центрах и т.  д. Также такие генераторы позволяют значительно ускорить строительство того или иного сооружения в тех местах, где нет возможности провести линию электропередачи.

В быту такие устройства также применяются. Они обладают более компактными размерными характеристиками и универсальностью. Часто их используют для питания частных домов, дачных участков или коттеджей.

Обратите внимание! Бытовые и производственные генераторы перемененного тока пользуются популярностью практически во всех сфера жизни человека. Особенно они полезны там, где постоянно возникают перебои с подачей электроэнергии или ее нет вообще.

Возбуждение генератора переменного тока

Как устроен генератор переменного тока

Устройство генератора крайне простое. Он состоит из двух основных частей: подвижной (ротор или индуктор) и неподвижной (статор или якорь). В ГПТ ротором выступает электрический магнит, создающий магнитное поле, которое и принимает статор. Поверхность якоря обладает впадинами, которые называются пазами. В них виднеется обмотка катушки, выступающей в роли проводника.

Обратите внимание! Обычно якорь изготавливают их спрессованных листов стали толщиной не более 0,3 мм. Их изоляционный слой представляет собой простое лаковое покрытие.

Ротор устанавливают внутри статора. Его вращение осуществляется с помощью двигателя, мощность которого передается через обычный вал и некоторые опорные элементы. На валу также имеется возбудитель с постоянным значением электротока, питающий им обмотки катушки. Также среди компонентов имеется аккумуляторная батарея, которая инициализирует запуск стартера и может подавать электричество, если его не хватает для запуска двигателя, его работы.

Важно! Основное различие между однофазным и трехфазным генераторами электрического тока заключается в том, какое максимальное напряжение выдается прибором. В первом случае это 220 В, а во втором — и 220, и 380 В.

Устройство установки

Виды генераторов переменного тока

Есть несколько типов классификации генераторов. Наиболее распространенный — по мощности. Они бывают маломощными и высокомощными. Для решения бытовых задач применяются компактная и маломощная электроустановки, которые обычно используется в качестве резервного источника питания.

В последнее время популярность обрели сварочные генераторы. С бензиновыми моделями следует быть осторожным, так как они должны использоваться только по своему прямому назначению. В противном случае их срок эксплуатации истечет намного раньше положенного. Диагностика и ремонт таких приборов — достаточно дорогостоящие, и чаще проще купить новый аппарат.

Еще одно разделение — асинхронные и синхронные генераторы. Они отличаются конструкцией ротора. В синхронном приборе катушка находится на роторе, а в асинхронном на валу есть специальные углубления, которые предназначены для вставки обмотки. Подробнее о них далее.

Маломощный генератор

Асинхронные генераторы

Асинхронные двигатели — это приборы, которые работают в тормозящем режиме. В данной ситуации ротор выполняет вращения только в одном направлении, совпадающем с движением магнитного поля, но немного опережает его.

Обратите внимание! Такие установки практически не подвержены коротким замыканиям и обладают повышенной защитой от воздействия внешних факторов.

Асинхронный генератор

Синхронные генераторы

Синхронный двигатель — это электромеханизм, который работает в режиме генерации электрической энергии. Его особенность в том, что частота вращения стартера, а точнее его магнитного поля, равна частоте вращения ротора.

К сведению! Синхронные обладают роторами, которые выполнены в виде постоянных или электрических магнитах. Полюсов у них может быть и 2, и 4, и 6. Главное, чтобы это число было кратным двум.

Синхронный генератор

Какой ток вырабатывает генератор

Характеристика тока, который вырабатывается генератором, зависит от его конструкции. Как уже стало понятно, и переменный генератор, и постоянный генератор содержат в своей конструкции электрический или постоянный магнит, создающий поток магнитного поля. В обоих случаях можно найти обмотку из медного проводника. Она вращается и, занимая различные положения в поле магнита, создает наведенную ЭДС.

Если представить, что обмотка разделена на две одинаковые части, то они поочередно будут занимать то горизонтальное, то вертикальное положение. ЭДС будет сначала максимальной, а затем нулевой. Это и будет генерация переменного тока.

Обратите внимание! Если в процессе полуоборота каким-либо образом переключить потребитель энергии, то он будет получать уже постоянный, но пульсирующий ток. В этом и отличие.

Характеристика переменного и постоянного электрических токов

Схема генератора переменного тока

Принципы работы генератора переменного и постоянного токов уже понятны, как и его основные конструкционные элементы. Необходимо рассмотреть пару схем для обобщения материала и понимания процесса генерации электротока.

Схема обычного устройства генерации электротока

Таким образом, были рассмотрены генератор переменного тока, устройство и принцип его действия.

Принципиальная схема электрического генерирующего устройства

Строение этого аппарата практически не поменялось с момента его создания еще в 1800-х гг. Данное электрооборудование служит для выработки тока, который применяется для бытовых или производственных целей.

Генератор электрического тока: виды приборов, принцип работы

Выбор генератора — процесс, который во многом опирается на личные предпочтения. Для кого-то предпочтительны мобильность с малым весом. Другим важна автоматизация, длительная работа при любых условиях. Но в любом случае надо опираться ещё и на подходящую мощность. Есть другие параметры, способные сказаться на итоговом решении, когда выбирают генератор электрического тока.

Как работает

В камерах двигателя размещается сжатое топливо, которое может воспламеняться. В процессе горения образуются газы, начинающие вращать коленвал. Из-за этого начинает работать ротор альтернатора. В статоре образуется магнитное поле.

Электрический генератор

Результат процессов, описанных ранее, — появление индукционного электрического тока в обмотке. Он доступен для потребления сразу на выводе устройства, любыми другими приборами. Поездки на природу, резервное питание — ситуации, когда подобные решения становятся актуальными. В этом случае электрический генератор незаменим.

Типы генераторов

Одна из классификаций генераторов основана на источнике, из которого поступает энергия. Ток в результате работы внутренних компонентов тоже выделяется разный, что помогает выделить и другие группы. У каждой разновидности свои особенности, положительные и отрицательные стороны.

Бензиновый

В большинстве своём мощность таких устройств не превышает 20 кВт. Сфера использования приборов достаточно широкая:

  • Загородные дома.
  • Дачи.
  • Питание ручных электроинструментов.
  • Небольшие станки, и так далее.
Модели

Освещение придомовой территории, торговых площадей, автомобильных стоянок — работы, выполнение которых для таких видов генераторов электрического тока не представляет хлопот.

Интересно! АИ-92 — марка бензина, которая стандартно выступает в качестве источника топлива для большинства моделей. 76 и 95 — разновидности топлива, которые тоже разрешают использовать, но кратковременно.

Бензиновые генераторы для переменного тока бывают мобильными, либо стационарными. Колёсной парой оснащают установки, характеризующиеся повышенной мощностью. Ручной запуск или стартер применяют в равной степени, в зависимости от основных характеристик модели. Звукопоглощающий кожух используют, чтобы работа устройства была не такой шумной.

Дизельные

Мощность приборов этого класса может достигать 3 мВт. Для загородных домов и дач это неплохие источники постоянной энергии. Мощное деревообрабатывающее оборудование тоже часто питается за счёт автономных дизельных источников переменного электрического тока. То же касается станков с другим назначением. Дизель-генераторы иногда используют для обеспечения током целых посёлков.

Внутреннее устройство

Установки и в этом случае отличаются стационарным либо мобильным исполнением. Отличительная черта — шумная работа. Поэтому в некоторых случаях не обойтись без специальных кожухов, поглощающих звуки от электрических генераторов.

Дизель-генераторы отличаются от бензиновых аналогов уменьшенным потреблением топлива. И сами исходные материалы стоят дешевле. У дорогих моделей поддерживаются дополнительные функции:

  • Управление процессом генерации энергии.
  • Автоматическое включение в работу при возникновении аварийных ситуаций.

Газовые

При выборе главное — определиться, в каком режиме оборудование будет работать на постоянной основе. Здесь специалисты дают несколько рекомендаций:

  • При организации полного автономного электроснабжения дома рекомендуется отдать предпочтение моделям с жидкостным охлаждением ДВС, рассчитанным на бесперебойную эксплуатацию.
  • Резервные модели актуальны, если на территории участка часто отключают свет. Обычно они не могут работать дольше 10-20 часов. После этого требуется перерыв, не обойтись и без технического регламентного обслуживания.
Запуск

Устройства могут работать на сжиженном либо природном газе. Последний вариант больше подходит для приспособлений, настроенных на основное энергосбережение. Резервные варианты лучше применять совместно с баллонами сжиженного газа. Сейчас выпускаются модели, поддерживающие обе разновидности топлива сразу.

Некоторые допускают работу с помощью бензина. Поэтому можно не волноваться о том, что владельцы останутся без электричества.

Классификация генераторов

Существует несколько признаков, на основании которых электрический генератор можно отнести к одной из разновидностей:

  • Сфера применения.
  • Режимы работы.
  • Фазность.
  • Автономность.
Эксплуатация

По каждому из признаков надо изучить модель заранее, тогда и выбор проще будет сделать.

Автономность

Полная независимость от централизованных источников энергии — одно из главных преимуществ, которыми обладают современные генераторы. В зависимости от этого показателя, модели делятся на мобильные либо стационарные.

Стационарные

Речь идёт о генераторных станциях, в основе работы которых — дизельные двигатели. Подходят для снабжения электрической энергии потребителей, удалённых от других подобных объектов. Обеспечивают снабжение током на тех территориях, где даже малейшая остановка производственных процессов приведёт к серьёзным негативным последствиям.

Мобильные

Чаще всего эти агрегаты — самые компактные. Допускают перемещение в пространстве установки. У передвижных станций сфера применения довольно широка:

  1. Электросварка.
  2. Местное освещение.
  3. Снабжение током бытовых электроприборов, и так далее.
Обслуживание и ремонт

Внутри оборудования размещают двигатель внутреннего сгорания, который способен работать на дизельном топливе либо бензине. Агрегаты отличаются друг от друга по габаритам. Одного человека хватает, чтобы перемещать только самые маленькие устройства. Но есть мобильные варианты, монтаж которых проводят на автомобильных прицепах.

Фазность

Агрегаты разделяют на трёх- и однофазные в зависимости от внутренней структуры устройств.

Однофазные

Отличаются способностью производить однофазный ток. Питание бытовых приборов — главное назначение устройств. Обычно аппараты выпускают мобильными, чтобы с ними было проще обращаться. Частные домовладения — объекты, внутри которых однофазные агрегаты можно встретить чаще всего. Например — для удовлетворения различных нужд на бытовом уровне.

Трёхфазные

Питание силового электрооборудования — вот в чём состоит основная функция. Иногда происходит разделение такой энергии по нескольким фазам. Для питания электропроводки это очень удобное решение, позволяющее развести линию на несколько частей.

Интересно! Главное — чтобы мощность потребления у всех линий оставалась примерно одинаковой. Генератор быстро выходит из строя, если между значениями образуется серьёзная разница.

Режимы работы

Основные и резервные — две главные разновидности режимов работы согласно этой классификации.

Основные

Такие аппараты созданы, чтобы работать на постоянной основе. Группу промышленных установок представляют мощные электрогенераторы, снабжённые дизельными двигателями. Актуальны для объектов, которым наличие электрической энергии требуется постоянно.

Резервные

По названию легко понять, что такие электрические генераторы применяются лишь в некоторых, исключительно крайних случаях. Например, если централизованное электроснабжение отключают на некоторое время. Такие приборы могут включаться, если срабатывает реле, реагирующее на уменьшение напряжения. Беспрерывная работа допустима только на протяжении нескольких часов.

Сфера применения

Генераторы выпускают с расчётом на два основных направления — бытовые условия либо промышленные объекты.

В быту

Выбор бытовых генераторов на современном рынке порадует любого потребителя, вне зависимости от масштабов и запросов. Обычно выбирают однофазные установки, способные наладить бесперебойное снабжение электрическим током при аварийных ситуациях. Питание выносного электрооборудования — ещё одна сфера применения. Качество тока становится особенно важным показателем, если речь идёт о бытовых электроприборах, применяющих цифровую элементную базу. В этом случае энергия должна обладать такими параметрами: 220 В, 1 А, 50 Ггц.

На даче

При электросварочных работах применяют установки, обладающие повышенной мощностью. Преимущество в том, что для формирования электромеханической дуги вырабатывается ток с серьёзной силой.

Обратите внимание! Если в инструкции не описано сразу применение для электросварки, то стоит отказаться от подобной идеи. Иначе генераторы быстро портятся.

Промышленные объекты

Чаще речь идёт о независимых мощных стационарных установках. Они актуальны для промышленных предприятий и целых жилых районов, больниц, общественных учреждений с высокой проходимостью. Тогда такие механические приспособления актуальны.

Качество эксплуатации: от каких факторов зависит?

Есть некоторые важные параметры, без расчёта которых нельзя сделать правильный выбор.

Для этого надо заранее посчитать, какую мощность потребляют все устройства, установленные дома. Нагрузка от основных потребителей может быть активной и реактивной. Главное — учитывать некоторый запас, применять соответствующие коэффициенты.

Что внутри?

1-1,3 — в таком диапазоне находится коэффициент активной нагрузки для бытовых электрических приборов. 3 — тот же параметр, но для устройств, работающих с реактивной нагрузкой.

Важно! Нужно сложить все виды нагрузки друг с другом, чтобы понять, какой агрегат требуется в том или ином случае. 15% откладывают про запас сверху. Ведь со временем иногда увеличивают количество электрических приборов. При пуске некоторые приборы потребляют гораздо больше энергии, чем указано в сопроводительной документации.

  • Разновидность нагрузки, с которой работает генератор.

Бывают сети с напряжением 220 и 380 В. Многие думают, что последний вариант — универсальный, потому ему и следует отдать предпочтение в большинстве случаев. Но лучше всё-таки остановить выбор на однофазной сети, если нет планов по подключению приборов с соответствующими характеристиками.

Иначе при монтаже электропроводки возникают проблемы, которые не удаётся предвидеть сразу.

  • Разновидности используемого топлива для генерирования тока.

Надёжность большинства современных установок остаётся практически одинаковой. Существенное отличие — только в стоимости приборов и источников энергии для них.

Выбор агрегата

При покупке генератора рекомендуют сразу решить, для каких целей нужна установка. Если это резервный источник питания — учёту подлежит минимальный набор приборов. Чтобы организовать полностью автономную систему, надо посчитать все приборы, добавить к ним минимум 20%.

Работа зимой

Выбирая между бензиновыми и дизельными агрегатами, покупатель должен ответить для себя на несколько вопросов:

  • Количество фаз.
  • Разновидность запуска двигателя для той или иной ситуации.
  • Допустимый уровень по шуму.
  • Необходимый показатель мощности.
  • Траты на приобретение агрегата.
  • Какому производителю решено довериться? Это важно и для неэлектрических установок.

Каким компаниям доверять?

Выпуском электрических генераторов занимаются не только известные компании, но и те, что появились совсем недавно. В имеющемся ассортименте легко запутаться без некоторой подготовки.

Стационарная установка

Отечественному покупателю хорошо известны следующие несколько названий:

  • «Вепрь». Пользуется наибольшим спросом среди российских компаний, занимающихся этим направлением. Мощность находится в диапазоне от 2 до 230 кВт. Генераторы подходят как для бытового, так и для промышленного применения. WAY — модели, подходящие для эксплуатации в домашних условиях.
  • SDMO. Ещё один производитель, модели которого встречаются в большом количестве. Агрегаты и в этом случае с двигателями, работающими на 1 либо на 3 фазах. Мощность, внешнее исполнение — главное отличие между разными моделями. Корпус с шумопоглощением отлично подходит тем, кто использует именно бытовые разновидности генераторов. Воздушное охлаждение, мощность до 10 кВа — характеристики отдельного класса устройств. Они часто снабжаются дополнительными выходами для переменного либо постоянного тока. Электростартер дополняет стационарные разновидности моделей. Они устанавливаются на раме или внутри контейнеров с функцией шумоизоляции.
  • Geko. Производитель с широкой линейкой продукции для любых условий. Создаёт не только бытовые модели, но и варианты с более узкой специализацией. Внутри моделей устанавливают одно- или трёхфазный двигатель в зависимости от того, какие цели преследует потребитель. Запуск — ручной либо его заменяет электростартер. У некоторых моделей есть кожухи, поглощающие шумы. Встроенная панель автоматического запуска тоже становится неплохим дополнением к стандартным электростанциям.

О сварочных генераторах

Пользователи часто интересуются, можно ли соединять с генераторами сварочное оборудование. Производители говорят, что такое возможно, но только для сварочных инверторов. Главное — эксплуатировать оборудование без перегрузки. Это напрямую влияет на продолжительность эксплуатационного срока.

Подключение

Для варки рекомендуют применять электрод не более 2 мм. Больший диаметр нецелесообразно выбирать, это негативно скажется на сварке.

Обеспечение требований безопасности

Обычно генераторы устанавливают вне закрытых мест. Главное — чтобы они находились там, где гарантирована полная защита от осадков, других воздействий внешней среды. Токсичность продуктов выхлопа — главная причина, по которой генераторы запрещается эксплуатировать именно в закрытых помещениях.

Обратите внимание! Твёрдая неподвижная горизонтальная поверхность без возвышений — оптимальная опора для установки. При монтаже надо проследить за тем, чтобы присутствовало свободное пространство площадью минимум 1 квадратный метр. Такое расстояние должно остаться с каждой стороны от генератора. Это необходимо, чтобы организовать свободную циркуляцию воздуха, исключить теплопередачу от генератора в сторону окружающих предметов.

Со стороны выпускного отверстия не должно быть посторонних предметов. Они могут повредить конструкцию либо стать источником дополнительной опасности для неё. На вентиляционные отверстия тоже не должно попадать никаких загрязнений.

К генератору не должны иметь доступ дети и другие посторонние лица. То же касается других людей, которым не знаком принцип безопасной эксплуатации.

Самостоятельный ремонт генераторов под запретом, для этого надо приглашать специалистов.

Нахождения источников пламени, тлеющего горения рядом с агрегатом недопустимо. Иначе преобразовывать энергию безопасно не получится.

Компактные приборы

Дополнительная информация о подключении, эксплуатации

Установку тоже лучше доверить специалистам, чтобы прибор работал в дальнейшем без перебоев. В этом случае он не станет и источником опасности для окружающих. Подключение прибора предполагает соединение его электропроводки с централизованной сетью. Поэтому требуется соблюдение дополнительных правил по безопасности.

Вот основные рекомендации:

  • Когда монтажные работы завершены — агрегат готовят к эксплуатации.
  • Для этого проверяют уровень масла в картере.
  • Такую процедуру осуществляют, пока агрегат находится на ровной горизонтальной поверхности.
  • По мере расходования производят заправку топливом.
  • Если агрегат внутри помещения — при обслуживании обязательно проветрить.
  • Заправка не допускает курение, использование открытого огня.
  • Бензин заливают максимально аккуратно, не допуская протечек.
Один из вариантов

Когда подготовительные работы завершены, двигатель запускают. За это отвечает ручной или электрический стартер, в зависимости от модели.

Генераторы переменного тока на современном рынке представлены в большом количестве моделей. Каждый делает окончательный выбор в зависимости от потребностей, целей использования. Различные системы питания, диапазон мощности определяются объектом, внутри которого монтируют установку. Иногда оценивают доступность конкретных видов топлива на территории того или иного региона. Рекомендуется выбирать модели, обслуживание которых требует наименьших затрат.

принцип работы генератора электрического тока, виды, из чего состоит и как выбрать

Знать все об электрогенераторах нужно не только инженерам, организаторам производства и различным менеджерам, как обычно считают. Знание принципа работы генератора электрического тока — базовое общекультурное знание современного мира. Представление о видах генераторов, о том, из чего они состоят, как выбрать устройство, позволяет существенно улучшить собственную жизнь и гарантировать комфорт даже при внезапном отключении электропитания.

История создания

Точно сказать, какие специалисты изобрели генератор электричества, нельзя — работу над ним вели многие инженеры и электротехники в течение десятков лет. Работа над такой техникой продолжается даже и в XXI веке, когда, казалось бы, ничего существенного прибавить уже нельзя. Решающим шагом к созданию генератора стало открытие взаимодействия электрического поля и магнитной стрелки в 1820 году. Постепенно удалось обнаружить, что электрический ток получается только в подвижном магнитном поле либо при движении в нем проводника. Честь такого открытия делят Аньош Йедлик (Австрия, 1827) и Майкл Фарадей (Англия, 1831).

Хотя первым был венгерский ученый, куда большую известность получили усилия его британского коллеги. Именно он детально и всесторонне исследовал электромагнитную индукцию, а не просто постарался создать конкретный механизм. Кроме того, Йедлик от прототипов смог перейти к полноценной динамо-машине лишь в 1850-е годы. А вот Майкл Фарадей создал генератор электроэнергии (хотя еще несовершенный) еще в 1831-м. Динамо-машины оказались исторически первым типом, но из-за размеров и сложности коммутации сошли со сцены.

Год изобретения первой электрической машины в России — 1833-й. Эммануил Ленц обнаружил тогда же обратимость систем — один аппарат может использоваться и для генерации, и в качестве электромотора.

Но архаичное крепостное хозяйство не позволило воспользоваться перспективными разработками, и вскоре приоритет безвозвратно ушел к промышленно развитым государствам. Вплоть до 1851 года все генераторы делались только с постоянными магнитами, в последующие 16 лет повысить мощность удавалось за счет простых электромагнитов. В 1866-1867 годах сразу несколько разработчиков представили электрические машины на самовозбуждающихся магнитах.

Генератор бельгийско-французского изобретателя Зеноба Грамма, построенный в 1870 году, впервые начал применяться широко в промышленных целях. Как только появился дизельный двигатель, неустановленный разработчик придумал, как использовать его в качестве генераторного привода. Уже в 1920-е годы дизель-генераторы начали активно применяться в промышленности. Исследования физиков в 1940-е годы позволили создать магнитогидродинамические генераторы. Но такие системы могут применяться исключительно на крупных электростанциях, перспективы их бытового применения отсутствуют.

Устройство и принцип работы

Любой электрогенератор превращает механический импульс в электрический ток. Его получение происходит за счет кручения катушки из проволоки, помещаемой в магнитное поле. Катушка делится на две главные части: жестко зафиксированный магнит и рамка из проволоки. Оба наконечника катушки связываются механически за счет контактного кольца, скользящего по угольной щетке. Эта щетка проводит электрический ток.

Принцип действия генератора подразумевает также то, что импульс, который вырабатывает вращающая часть, поступает на кольцо внутреннего контакта. Происходит это точно в момент прохождения части рамки около северного края магнита. Источник переменного тока работает обычно по принципу так называемой сильной выработки тока.

В нем есть всего один магнит, однако, он движется вокруг нескольких обмоток. Стоит учесть, что автомобильный генератор устроен несколько иначе.

Действовать он начинает при запуске системы зажигания. В этот момент ток через контактные кольца движется на щеточный узел и на систему возбуждения. Там он вырабатывает магнитное поле. Ротор, присоединенный к коленвалу, вырабатывает электромагнитные колебания. Переменный наведенный ток образуется на выводе перемотки. Частота кручения самовозбуждающегося генератора растет вплоть до определенного уровня, а после этого срабатывает выпрямитель.

Хотя основной принцип выработки тока состоит во взаимодействии магнитного поля, ротора и статора, вращать движущуюся часть могут различные источники механической энергии. Ими могут быть:

Синхронный тип генератора отличается совпадением частот кручения статоров и роторов. В качестве ротора применяется постоянный магнит. Когда устройство запускают, ротор начинает вырабатывать слабое поле. Как только растут обороты, начинает вырабатываться большая электрическая сила. Импульс проходит через регулятор напряжения и выдается в электрическую сеть.

Принцип работы генератора переменного тока

Оглавление:

В наши дни практически везде распространены генератора переменного тока или просто индукционные генераторы. Названы они так, потому что их работа основана на физической модели электромагнитной индукции. Есть два типа индукционных генераторов: переменного тока и постоянного тока. Далее мы рассмотрим разницу между их устройством и работой.

Принцип работы генератора переменного тока

Принцип работы генератора переменного тока, о котором пойдет речь в данном разделе применяется для обеспечения электрической энергией трактора. Генератор переменного тока один из основных элементов, которые снабжают трактор током. Это наиболее распространенная сфера использования данных генераторов, но не единственная. Такие устройства используются и на электростанциях.

Там для обеспечения оптимального действия генераторов переменного тока используют синхронные генераторы.
Принцип работы генератора переменного тока заключается в трансформации механической энергии, которую создает двигатель (к примеру, автомобиля) обрабатывая её в магнитную и передает в виде электрической в генератор постоянного тока. Опишем этот процесс подробнее.

Стандартный генератор трактора состоит из ротора, статора и ремней привода. Механическая энергия, которую создает двигатель проходит в свою очередь через ротор. Ротор, почти всегда являющийся обычным электрическим магнитом, вращается и создает магнитное поле. Иными словами, ротор с его элементами — это наш индуктор. Ротор состоит из коллекторных медных колец, которые вращаются и в процессе прижимают к себе щетки ротора, которые находятся в неподвижном состоянии, и дают энергию от неподвижных частей генератора.

После этого магнитная энергия проходит к статору. Деталями статора есть три катушки с проводами, которые установлены на ротор и при взаимодействии с роторными щетками превращают магнитную энергию ротора в электрическую. Энергия через диодный мост из 9-10 диодов передается аккумулятору.

В конструкции выделяют главные и вспомогательные диоды, так как одни занимаются выравниванием энергии для передачи аккумулятору, а другие питают регулятор напряжения и передают электроэнергию лампе, которая запускает генератор постоянного тока при оборотах двигателя и проверяет его работоспособность.

По производимой энергии ГПТ делят на маломощные и высоко мощные. Маломощные очень часто используют в домашних целях. Часто они выступают как источник резервного питания. С бензиновыми версиями нужно быть осторожным, потому что они имеют очень слабый моторесурс.

Ранее мы упоминали что генераторы переменного тока вырабатывают электроэнергию в тракторах и на электростанциях. Также ими пользуются владельцы загородных домов для обеспечения себя автономным электричеством. В таких случаях устанавливают дизельный генератор. Их достоинства: работают экономнее, изнашиваются реже, действуют на протяжении нескольких лет без ремонта благодаря их уникальному строению.

Генератор переменного тока: принцип действия

Вокруг электрического магнита в роторе размещены проволочные рамки, крутящиеся между его полюсами. Через контактные кольца каждый ее конец соединяется со щеткой. Этот процесс мы уже описывали.

Генераторы постоянного тока различают по принципу работы и источнику электромагнитной энергии. Так, на сегодня существуют генераторы с независимым источником возбуждения и само возбуждающиеся генераторы. Генераторы с самовозбуждением обрабатывают электроэнергию, которую они же и производят.

Другой указанный тип берет энергию из другого источника. Им может быть двигатель или другой генератор. Мы уже описывали принцип перехода электричества от генератора переменного тока к аккумулятору ранее. Вся модель действия генератора постоянного тока заключается в наличии якоря, то есть механизма который управляет электрической энергией.

Якорь находится между двух противоположных полюсов магнита. На параллельных шлицах якоря находится обмотка  два конца которой прикреплены к коллектору. К нему также устанавливают щетки, через которые и будет сниматься ток. Якорь постоянно вращается и при вращении обмотки постоянно замыкаются, в разном положении магнитного поля. Это основа работы ГПТ.

Принцип работы генератора постоянного тока (ГПТ)

Ток во внешней цепи был бы переменным, если бы не наличие коллектора в устройстве. Однако благодаря обмоткам и щеткам он постоянно двигается в одно и то же направление. Такой ток называют пульсирующим.
В процессе своего вращения якорь оборачивается на 180° и изменяется направление тока. Однако после этого ток не становится переменным. Сразу при смене направления тока в генераторе происходит смена пластин под щетками. Иными словами, тот ток который начал двигаться в другое направление, пластины направляют обратно в правильную сторону.

Полярность щеток в генераторе остается той же самой, и поэтому ток во внешней цепи устройства тоже остается той же самой. Она не меняет своего направления. Таким образом реализуется функция постоянного тока.
Если вам нужно уменьшить пульсацию постоянного тока, вам потребуется равномерно распределить витки обмотки по якорю. Каждый виток должен касаться коллекторной пластины под щеткой и таким образом уменьшать уровень вибрации. При желании можно уменьшить пульсацию до неуловимой, используя 16 витков к 16 пластинам. Тогда ток станет постоянным не только за счет направления, но и за счет своей силы.

Основные части генератора переменного тока

Мы уже называли детали генератора переменного тока, когда говорили о принципах его действия. Теперь рассмотрим его органы подробнее.
К основным частям генератора переменного тока относятся:

  1. Индуктор — механизм, который преображает механическую энергию в магнитную. У нас это ротор.
  2. Якорь. Это составной элемент генератора, который из магнитной энергии делает электрическую. Функцию якоря выполняет статор.
  3. Контактные кольца. Расположены в задней части ротора. К ним присоединены щетки, которые передают энергию в устройстве от постоянных деталей генератора к вращающимся.

Якорь снабжают железным сердечником. Это для того чтобы генератор давал больше магнитной энергии, и вырабатывал больше электричества. Между металлическими сердечниками и магнитными полюсами делают зазор, чтобы не мешать вращению.
В качестве индуктора используют электромагнит. Лишь изредка в малых генераторах ставят постоянные магниты. Генераторы с постоянными магнитами обычно ставят на некоторые машины с двигателем внутреннего сгорания.
Внизу вам показано расположение органов генератора переменного тока.

  1. — статор (якорь)
  2. — ротор (индуктор)
  3. — контактное кольцо ротора
  4. — щетки

Также среди частей генератора мы можем выделит шкиф, реле-регулятор, диодный мост, который передает электрическую энергию дальше по назначению.
Ротор генератора может быть с зубчатой и с гладкой поверхностью. Зубчатые роторы пользуются успехом на машинах тракторах. Также возможно применять их вместе с тихоходными водными двигателями. К паровым двигателям с оборотами от 1500 до 3000 идут роторы с гладкой поверхностью.

Это объясняется тем, что зубчатые роторы несут большие механические потери из-за создания выступами вихрей воздуха. Гладкая поверхность не имеет такой проблемы. На гладких роторах обмотка устанавливается на пазы внешней стороны.
Статор имеет форму железного кольца, в пазах которого наложена медная обмотка.

Схема генератора постоянного тока

Генератор постоянного тока состоит из неподвижной индуктирующей части и индуктируемой вращающейся части (якоря).
Генератор состоит из:

Две части генератора соединены между собой щетками из графита или графитного сплава.
В изготовлении якоря использована электротехническая сталь. Её листы толщиной в 0,5 мм отслоены друг от друга в устройстве с помощью очень тонкой бумаги или лака. При сборке якоря на листах штампуют вмятины, именуемые пазами. На эти пазы потом укладывают изолированную часть обмотки якоря.
В коллекторе используют медные пластины, изолируемые друг от друга. Коллектор приваривается в определенных местах обмотки якоря.
Предоставляем вам схему устройства генератора постоянного тока:

 

принцип действия, схема подключения, устройство + инструкция с фото и видео

Современный окружающий нас мир трудно представить без электрической энергии. Одними из устройств, для производства с детства привычного нам электричества, и являются генераторы разных типов. Рассмотрим устройство генератора постоянного тока.

Любой генератор является механизмом, для преобразования любого вида механической энергии в электрическую. Любое механическое усилие, будь то рычаг, электрический или бензиновый двигатель, служит источником энергии. А подведение этого источника к генератору приводит к выработке им электрического тока.

Основное отличие от генераторов переменного тока заключается в необходимости присутствия аккумулятора или ИБП. Это значительно сужает их применение в промышленности и бытовой сфере.

В последнее время, в связи с повсеместным развитием электротранспорта их используют в качестве источника питания для электромобилей, погрузчиков, троллейбусов и прочего автотранспорта.

К достоинствам можно отнести малые габариты и вес, отсутствие потерь мощности на вихревых токах и малую зависимость от климатических условий. Чтобы понять, что представляет из себя  это устройство, достаточно взглянуть на фото генератора постоянного тока.

Краткое содержимое статьи:

Конструкция генератора

Рассмотрим, что представляет собой генератор постоянного тока. Во-первых, это изготовленный из прочной стали или чугуна корпус устройства. По корпусу также проходит магнитное поле, создаваемое полюсами генератора. Во-вторых, это ротор и статор.


На ферромагнитный статор закрепляется катушка возбуждения. Направление магнитного потока определяют сердечники статора, оснащённые полюсами.

Для большого КПД самого генератора, ротор собран из металлических пластин. Кроме того такая конструкция ротора позволяет значительно сократить появление вихревых токов.

На металлические пластины сердечника наматывают медную или обмедненную обмотку – обмотку самовозбуждения. Количество щеток генератора, изготавливаемых из графита, зависит от количества полюсов на нем, как минимум две. Конструкцию генератора мы можем наглядно рассмотреть на рисунке.

Вывод контура генератора соединяются с помощью коллекторных пластин. Пластины делаются из доступного и хорошего проводника электрического тока – меди, а разделяются между собой диэлектриком.

Принцип действия

Принцип действия генератора постоянного тока, как и любого другого устройства похожего типа основан на знакомого нам со школы явления электромагнитной индукции и появление в устройстве электродвижущей силы – ЭДС. Вспомним школьную физику: если к проводнику с вращающимся внутри него постоянным магнитом присоединить какую-либо нагрузку, то в ней появится переменный ток. Такое возможно из-за того, что поменялись местами магнитные полюса самого магнита.

Чтобы получить ток постоянный необходимо присоединять точки подключения нагрузки синхронно со скоростью вращения магнита. Для этого и предназначен в генераторе коллектор, закреплённый на роторе и крутящийся с той же частотой.


Снимается полученная в результате всего этого процесса энергия с помощью графитных щёток, обладающих хорошей проводимостью и достаточно низким трением. Когда происходит переключения пластин коллектора ЭДС равна нулю, но полярность ее не меняется, за счёт переподключения на другой проводник.

Классификация

Разделение генераторов по классам происходит по тому принципу, как они возбуждаются. Есть два основных типа классификации генераторов, это самовозбуждающиеся и генераторы с независимым возбуждением.

Первый класс это устройства, где обмотка питается непосредственно от якоря. Его можно подразделить на последовательно, параллельное и смешанное возбуждение. Второй класс подразделяется на электромагнитное и магнитоэлектрическое возбуждение.

Способы возбуждения

За счёт использования в устройствах малой мощности постоянных магнитов получается магнитное возбуждение. Соответственно при использовании электромагнитов имеем электромагнитное. Данный способ нашёл широкое применение при производстве генераторов такого типа.

Ещё способы возбуждения генераторов постоянного тока зависят от назначения нужного нам генератора и от того, каким способом подключим обмотку. Если подключить обмотку через специальный реостат к внешнему истоку тока, тогда имеем независимое возбуждение. Такие генераторы находят широкое применение в электрохимическом производстве.

При подключении обмотки через все тот же реостат к клемам самого генератора, получим параллельное возбуждение. Большим плюсом генераторов с таким типом возбуждения является его защита от короткого замыкания, обусловленного все тем же способом возбуждения.


Если обмотку подключить последовательно к якорю, то получится последовательное возбуждение. При таком способе подключения наблюдается сильная зависимость изменения напряжения от величины подключённой нагрузки.

При наличии в генераторе двух обмоток имеет место смешенное подключение, одну обмотку подключают последовательно, другую параллельно.

Подключение проводят таким образом, чтобы создавались магнитные потоки в одном векторе. Число витков при таком подключение в обмотках рассчитывается так, чтобы падение напряжение на одной обмотке компенсировалось другой.

Технические характеристики

Под основными техническими характеристиками генераторов можно понимать следующие величины. Это ЭДС генератора. Непосредственно с ЭДС любого генератора напрямую связана его полная электрическая мощность, которая ей прямопропорциональна.

Полная мощность возрастает при увеличении количества полюсов и частоты оборотов якоря. Полезная же мощность, передаваемая на подключённое внешнее устройство, равна произведению выходного тока на выходное напряжение.

Основная характеристика любого производящего что-либо устройства, в том числе и нашего генератора это КПД. Если генератор выключить, а потом включить, то его КПД будет уменьшаться, в связи с увеличением затрат энергии на нагрев обмотки. Различают электрический КПД и промышленный.


Если генератор работает на холостом ходу или загружен не полностью, то и КПД соответственно значительно уменьшается. Для того чтобы получить комфортный в экономическом плане режим работы генератора в сети, где нагрузка постоянно изменяется, подключают несколько генераторов, соединённых между собой параллельно.

При таком подключении, причём желательно через автомат и вольтметр, добиваются равномерного распределения нагрузки между работающими генераторами. При увеличении потребления внешней нагрузки, в работу включается второй генератор, тем самым регулируя обороты первого и выравнивая напряжение.

При использовании генераторов со смешанным возбуждением происходит автоматическая регулировка характеристик работающих вместе генераторов, повышается стабильность работы.  Это возможно из-за того, что в таких генераторах есть уравнительный провод, проходящий между отрицательными или положительными щётками. Именно эта шина и делает работу таких генераторов устойчивой.

Фото генераторов постоянного тока

Как работает электрический генератор для выработки электроэнергии?

Электрогенератор — это машина, которая используется для выработки электроэнергии, которую можно использовать в любом количестве приложений, от небольших электроинструментов до крупных промышленных приложений. Это популярная альтернатива использованию электросети, вырабатываемой ветряными турбинами или ископаемым топливом, и паровой турбиной высокого напряжения на электростанции или электростанции.

Есть много типов генераторов, от бензиновых генераторов до портативных генераторов и инверторных генераторов.К домашним генераторам, которые могут работать на природном газе, резервным генераторам на случай отключения электроэнергии и гораздо более крупным промышленным генераторам. Однако в этой статье мы конкретно поговорим о дизельных генераторах, также известных как генераторные установки.

Здесь, в Advanced, наши высококвалифицированные отраслевые эксперты знают все, что нужно знать о дизельных генераторах. Итак, этот блог будет стремиться объяснить, как работает электрогенератор, и из каких основных рабочих компонентов они состоят.

Как вырабатывается электроэнергия?

Простое объяснение этому состоит в том, что дизельные генераторы работают как электрическая машина, которая преобразует один источник энергии в другую форму энергии.В этом случае генератор энергии работает за счет преобразования механической энергии в электрическую.

Вопреки тому, что многие могут предположить, на самом деле никакого реального «создания» электричества не существует. Один электрический генератор или несколько синхронных генераторов не могут создать электричество из воздуха. Все это связано с теорией электромагнитной индукции Майкла Фарадея, о которой мы поговорим подробнее, когда рассмотрим различные части генератора.

Основные части дизельного генератора

Каждый дизель-генератор состоит как минимум из девяти различных, но одинаково важных частей.Это:

  • Дизельный двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Система охлаждения и выхлопная система
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Рама или салазок основной сборки

Чтобы лучше понять, как работает электрогенератор для преобразования механической энергии в электрическую, мы рассмотрим роли всех этих компонентов, начиная с дизельного двигателя.

Дизельный двигатель

Это простой дизельный двигатель, он ничем не отличается от двигателей автомобилей, фургонов, грузовиков или других больших транспортных средств. Это источник механической энергии, и размер двигателя имеет значение. Если вам нужна большая мощность генератора, вам нужен двигатель большего размера. Чем больше двигатель, тем большую электрическую мощность вы можете произвести.

Генератор

По сути, это компонент, который отвечает за выработку выходной мощности.Здесь мы видим, что в игру вступает концепция электромагнитной индукции.

Генератор состоит из множества сложных компонентов, но одним из наиболее важных аспектов является ротор. Это вал, который вращается за счет механической энергии, подаваемой двигателем, и вокруг него закреплено множество постоянных магнитов. При этом создается магнитное поле.

Это созданное магнитное поле непрерывно вращается вокруг другой важной части генератора переменного тока: статора.Проще говоря, это разновидность различных электрических проводников, которые плотно намотаны на железный сердечник. Здесь все становится немного более научным. Согласно принципу электромагнитной индукции, если электрический проводник остается неподвижным, а магнитное поле движется вокруг него, возникает электрический ток.

Таким образом, генератор переменного тока использует механическую энергию, создаваемую дизельным двигателем, который приводит в движение ротор для создания магнитного поля, которое перемещается вокруг статора, которое, в свою очередь, генерирует переменный ток.

Топливная система

Топливная система в основном состоит из топливного бака с трубкой, соединяющей его с двигателем. Здесь дизельное топливо может подаваться непосредственно в двигатель, который затем запускает весь процесс, описанный выше. Размер топливного бака в конечном итоге определяет, как долго генератор может оставаться активным.

Наш ассортимент бесшумных генераторов с навесом обычно поставляется с топливными баками, включенными в базовую комплектацию электрогенератора.Если требуется больший объем топлива, мы можем спроектировать и изготовить индивидуальный удлиненный базовый топливный бак, или агрегат можно прикрепить к дополнительному отдельно стоящему большому топливному баку.

Для проектов более крупных генераторов, требующих установки генератора в звукоизоляционном кожухе, отдельные топливные системы обычно устанавливаются или располагаются внутри кожуха, под кожухом, а иногда и в обоих случаях.

Регулятор напряжения

Вот самая сложная часть электрогенератора.Стабилизатор напряжения служит одной довольно очевидной цели: регулировать выходное напряжение. Здесь происходит слишком много всего, чтобы объяснить только в этой статье, нам, вероятно, понадобится отдельная часть, чтобы описать весь процесс регулирования напряжения.

Проще говоря, это гарантирует, что генератор вырабатывает электричество при хорошем стабильном напряжении. Без него вы бы увидели огромные колебания, зависящие от того, насколько быстро работает двигатель. Излишне говорить, что все используемое нами электрическое оборудование не сможет справиться с таким нестабильным питанием.Итак, эта часть творит чудеса, чтобы все было гладко и устойчиво.

Система охлаждения и выхлопная система

Оба эти компонента играют очень важную роль, и хорошая новость заключается в том, что их легко понять! Система охлаждения помогает предотвратить перегрев вашего генератора. В генераторе выделяется охлаждающая жидкость, которая уравновешивает всю дополнительную тепловую энергию, производимую двигателем и генератором. Затем охлаждающая жидкость забирает все это тепло через теплообменник и выводит его за пределы генератора.

Выхлопная система работает так же, как выхлопная система вашего автомобиля. Он забирает любые газы, производимые дизельным двигателем, направляет их через систему трубопроводов и выпускает их от генераторной установки.

Система смазки

Этот компонент прикрепляется к двигателю и прокачивает через него масло, чтобы все детали работали плавно и не шлифуем друг о друга. Без него двигатель выйдет из строя.

Зарядное устройство

Всем дизельным двигателям нужен крохотный электромотор, чтобы привести его в действие.Для этого небольшого двигателя требуется аккумулятор, который необходимо зарядить. Зарядное устройство для аккумулятора поддерживает его в хорошем состоянии и заряжает его от внешнего источника самого генератора.

Панель управления

Здесь просто управляют и управляют генератором. На генераторе с электрическим запуском (или автоматическим запуском) вы найдете здесь целый ряд элементов управления, которые позволяют вам выполнять разные действия или проверять определенные цифры. Это может быть что угодно, от кнопки запуска и переключателя частоты до индикатора топлива двигателя, индикатора температуры охлаждающей жидкости и многого другого.

Рама основного узла

Каждый генератор нужно как-то содержать, и это основная сборочная рама. В нем находится генератор, и на нем построены все его части. Он удерживает все вместе и может быть открытого или закрытого (с навесом) для дополнительной защиты и шумоподавления. Генераторы для наружной установки обычно помещаются в защитный каркас, устойчивый к атмосферным воздействиям для предотвращения повреждений.

Итак, вот и все, вот как работает электрогенератор.Дизельный двигатель снабжает генератор механической энергией, которая затем преобразуется в электрический ток благодаря магнитному полю, создающему электромагнитную индукцию. Но теперь вы точно знаете, как это происходит, а также со всеми различными частями внутри электрогенератора.

ЛУЧШИЕ ЦЕНЫ на электрогенераторы в Великобритании
Магазин дизельных генераторов Магазин бесшумных генераторов Генераторы для дома

Блог, опубликованный Advanced Diesel Engineering 4 сентября 2018 г.

Принцип работы

и объяснение генераторов переменного и постоянного тока

Генератор

— это машина, преобразующая механическую энергию в электрическую.Он работает по принципу закона Фарадея электромагнитной индукции. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется ЭДС, и эта индуцированная ЭДС равна скорости изменения потоковых связей. Эта ЭДС может возникать при изменении относительного пространства или относительного времени между проводником и магнитным полем. Итак, важными элементами генератора являются:

  • Магнитное поле
  • Движение проводника в магнитном поле

Работа генераторов:

Генераторы в основном представляют собой катушки электрических проводников, обычно медных проводов, которые плотно намотаны на металл. сердечника и установлены для поворота внутри экспоната из больших магнитов.Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, чтобы вызвать в нем поток электрического тока.


Источник изображения — лучшие альтернативные источники

Проводящая катушка и ее сердечник называются якорем, соединяя якорь с валом механического источника энергии, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по сравнению с магнитным полем .

Источник изображения — tpub

Точка, когда якорь генератора сначала начинает вращаться, а затем в железных полюсных наконечниках возникает слабое магнитное поле.Когда якорь вращается, он начинает повышать напряжение. Часть этого напряжения подается на обмотки возбуждения через регулятор генератора. Это приложенное напряжение создает более сильный ток обмотки, увеличивает силу магнитного поля. Расширенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря. В это время признаки обуви зависели от направления протекания тока в обмотке возбуждения. Противоположные знаки заставят ток течь в неправильном направлении.

Типы генераторов:

Генераторы классифицируются по типам.

  • Генераторы переменного тока
  • Генераторы постоянного тока
Генераторы переменного тока:

Их также называют генераторами переменного тока. Это наиболее важный способ производства электроэнергии во многих местах, поскольку сейчас все потребители используют переменный ток. Он работает по принципу электромагнитной индукции. Они бывают двух типов: индукционный генератор и синхронный генератор.Индукционный генератор не требует отдельного возбуждения постоянного тока, регуляторов, регуляторов частоты или регулятора. Эта концепция имеет место, когда катушки проводника вращаются в магнитном поле, вызывая ток и напряжение. Генераторы должны работать с постоянной скоростью, чтобы обеспечить стабильное напряжение переменного тока, даже если нагрузка недоступна.

Синхронные генераторы — это генераторы большого размера, которые в основном используются на электростанциях. Это может быть тип вращающегося поля или тип вращающегося якоря. У вращающегося якоря якорь находится у ротора, а поле — у статора.Ток якоря ротора снимается через контактные кольца и щетки. Они ограничены из-за высоких ветровых потерь. Они используются для приложений с низкой выходной мощностью. Генератор переменного тока с вращающимся полем широко используется из-за высокой мощности выработки и отсутствия контактных колец и щеток.

Это могут быть трехфазные или двухфазные генераторы. Двухфазный генератор вырабатывает два совершенно разных напряжения. Каждое напряжение можно рассматривать как однофазное напряжение. Каждый из них генерирует напряжение, полностью независимое от другого.Трехфазный генератор переменного тока имеет три однофазные обмотки, разнесенные таким образом, что индуцированное напряжение в любой одной фазе смещается на 120º относительно двух других. Они могут быть соединены треугольником или звездой. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Дельта-соединение выглядит как греческая буква дельта (Δ). При соединении звездой один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних соединений. Соединение Wye обозначается буквой Y.

Эти генераторы комплектуются двигателем или турбиной для использования в качестве мотор-генератора и используются в таких приложениях, как военно-морские, нефтегазовые, горнодобывающие машины, ветряные электростанции и т. Д.

Преимущества генератора переменного тока: Генераторы, как правило, не требуют обслуживания из-за отсутствия щеток.
  • Легко повышайте и понижайте через трансформаторы.
  • Размер линии передачи может быть меньше из-за функции повышения
  • Размер генератора относительно меньше, чем у машины постоянного тока
  • Потери относительно меньше, чем у машины постоянного тока
  • Эти выключатели генератора относительно меньше, чем выключатели постоянного тока
  • Генераторы постоянного тока:

    Генератор постоянного тока обычно используется в автономных системах.Эти генераторы обеспечивают бесперебойную подачу электроэнергии непосредственно в накопители электроэнергии и электрические сети постоянного тока без использования нового оборудования. Накопленная мощность передается нагрузке через преобразователи постоянного тока в переменный. Генераторами постоянного тока можно было управлять обратно на неподвижную скорость, так как батареи, как правило, стимулируют восстановление значительно большего количества топлива.

    Классификация генераторов постоянного тока

    Генераторы постоянного тока классифицируются в зависимости от того, как их магнитное поле создается в статоре машины.

    • Генераторы постоянного тока с постоянным магнитом
    • Генераторы постоянного тока с раздельным возбуждением и
    • Генераторы постоянного тока с самовозбуждением.

    Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешнего поля, поскольку они имеют постоянные магниты для создания потока. Они используются для приложений с низким энергопотреблением, таких как динамо-машины. Генераторы постоянного тока с раздельным возбуждением требуют возбуждения внешнего поля для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность. Они используются для гальваники и электрорафинирования. Из-за остаточного магнетизма, присутствующего в полюсах статора, генераторы постоянного тока с самовозбуждением могут создавать собственное магнитное поле, они запускаются.Они просты по конструкции и не нуждаются во внешней цепи для изменения возбуждения поля. Опять же, эти генераторы постоянного тока с самовозбуждением подразделяются на шунтовые, последовательные и составные генераторы.

    Они используются в таких приложениях, как зарядка аккумуляторов, сварка, обычные осветительные приборы и т. Д.

    Преимущества генератора постоянного тока:
    • В основном машины постоянного тока имеют широкий спектр рабочих характеристик, которые можно получить путем выбора метода возбуждения обмотки возбуждения.
    • Выходное напряжение можно сгладить, регулярно располагая катушки вокруг якоря. Это приводит к меньшим колебаниям, что желательно для некоторых приложений в установившемся режиме.
    • Нет необходимости в защите от излучения, поэтому стоимость кабеля будет меньше по сравнению с кабелем переменного тока.

    Теперь у вас есть четкое представление о работе и типах генераторов. Если у вас возникнут какие-либо вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.

    Как работают схемы | HowStuffWorks

    Вы когда-нибудь задумывались, что происходит, когда вы щелкаете выключателем, чтобы включить свет, телевизор, пылесос или компьютер? Что дает щелчок этого переключателя? Во всех этих случаях вы замыкаете электрическую цепь , позволяя току или потоку электронов по проводам.

    Электрическая цепь во многом похожа на вашу кровеносную систему. Ваши кровеносные сосуды, артерии, вены и капилляры подобны проводам в цепи. Кровеносные сосуды несут кровь по телу. Провода в цепи несут электрический ток к различным частям электрической или электронной системы.

    Ваше сердце — это насос, который управляет кровообращением в организме. Он обеспечивает силу или давление для циркуляции крови.Кровь, циркулирующая по телу, снабжает различные органы, такие как мышцы, мозг и пищеварительную систему. Аккумулятор или генератор вырабатывает напряжение — силу, которая пропускает ток через цепь.

    Возьмем простой случай электрического света. К свету подключаются два провода. Чтобы электроны выполняли свою работу по производству света, должна существовать замкнутая цепь, чтобы они могли проходить через лампочку, а затем выходить обратно.

    На приведенной выше схеме показана простая схема фонарика с батареей на одном конце и лампочкой фонарика на другом конце.Когда переключатель выключен, полная цепь не будет существовать, и не будет тока. Когда переключатель включен, произойдет замкнутая цепь и протекание тока, в результате чего лампа-вспышка будет излучать свет.

    Цепи

    могут быть огромными энергосистемами, передающими мегаватты энергии на расстояние в тысячу миль, или крошечными микроэлектронными микросхемами, содержащими миллионы транзисторов. Это необычайное сокращение электронных схем сделало возможными настольные компьютеры. Новым рубежом обещают стать наноэлектронных схем, схем с размерами устройств в нанометрах (одна миллиардная метра).

    В этой статье мы узнаем о двух основных типах электрических схем:

    • Силовые цепи передают и контролируют большие объемы электроэнергии. Примерами являются линии электропередач, системы электропроводки жилых и деловых помещений. Основными компонентами силовых цепей являются генераторы на одном конце и системы освещения, системы отопления или бытовые приборы на другом конце. Между ними находятся линии электропередач, трансформаторы и автоматические выключатели.
    • Электронные схемы обрабатывают и передают информацию.Подумайте о компьютерах, радио, телевизорах, радарах и сотовых телефонах.

    Как работает маршрутизатор?

    Какие бывают типы маршрутизаторов?

    Проводные маршрутизаторы

    Проводные маршрутизаторы обычно подключаются напрямую к модемам или глобальным сетям (WAN) через сетевые кабели. Обычно они поставляются с портом, который подключается к модемам для связи с Интернетом.

    Беспроводные маршрутизаторы

    Маршрутизаторы

    также могут подключаться по беспроводной сети к устройствам, поддерживающим те же стандарты беспроводной связи.Беспроводные маршрутизаторы могут получать и отправлять информацию в Интернет.

    Как маршрутизаторы маршрутизируют данные

    Маршрутизация, определенная

    Маршрутизация — это способность пересылать IP-пакеты — пакет данных с адресом Интернет-протокола (IP) — из одной сети в другую. Задача маршрутизатора — соединять сети вашего предприятия и управлять трафиком в этих сетях. Маршрутизаторы обычно имеют по крайней мере две карты сетевого интерфейса или сетевые адаптеры, которые позволяют маршрутизатору подключаться к другим сетям.

    Скорость передачи данных в сетях

    Маршрутизаторы

    определяют самый быстрый путь передачи данных между устройствами, подключенными к сети, и затем отправляют данные по этим путям. Для этого маршрутизаторы используют так называемое «значение метрики» или число предпочтений. Если у маршрутизатора есть выбор из двух маршрутов к одному и тому же местоположению, он выберет путь с наименьшей метрикой. Метрики хранятся в таблице маршрутизации.

    Создание таблицы маршрутизации

    Таблица маршрутизации, которая хранится на вашем маршрутизаторе, представляет собой список всех возможных путей в вашей сети.Когда маршрутизаторы получают IP-пакеты, которые необходимо перенаправить в другое место в сети, маршрутизатор проверяет IP-адрес назначения пакета, а затем ищет информацию о маршрутизации в таблице маршрутизации.

    Если вы управляете сетью, вам необходимо ознакомиться с таблицами маршрутизации, поскольку они помогут вам в устранении сетевых проблем. Например, если вы понимаете структуру и процесс поиска таблиц маршрутизации, вы сможете диагностировать любую проблему с таблицей маршрутизации, независимо от вашего уровня знакомства с конкретным протоколом маршрутизации.

    В качестве примера вы можете заметить, что в таблице маршрутизации есть все маршруты, которые вы ожидаете увидеть, но пересылка пакетов работает не так, как ожидалось. Зная, как найти IP-адрес назначения пакета, вы можете определить, пересылается ли пакет, почему пакет отправляется в другое место или был ли пакет отброшен.

    Управляющие роутеры

    Когда вам нужно внести изменения в параметры маршрутизации вашей сети, вы входите в свой маршрутизатор, чтобы получить доступ к его программному обеспечению.Например, вы можете войти в маршрутизатор, чтобы изменить пароли для входа, зашифровать сеть, создать правила переадресации портов или обновить прошивку маршрутизатора.

    Как маршрутизаторы могут помочь вашему бизнесу

    Совместное использование приложений

    Маршрутизаторы

    помогают предоставить сотрудникам доступ к бизнес-приложениям и, следовательно, повысить производительность — особенно для сотрудников, которые работают удаленно или за пределами главного офиса. Маршрутизаторы также могут предоставлять специализированные услуги, такие как VoIP, видеоконференцсвязь и сети Wi-Fi.

    Ускорение доступа к информации

    С помощью маршрутизаторов ваш бизнес может улучшить реакцию на запросы клиентов и упростить доступ к информации о клиентах. Это реальные преимущества в то время, когда клиенты требуют быстрых ответов на вопросы, а также индивидуального обслуживания. Используя маршрутизаторы для построения быстрой и надежной сети малого бизнеса, сотрудники могут лучше реагировать на потребности клиентов быстро и разумно.

    Снижение эксплуатационных расходов

    Маршрутизаторы

    могут положительно повлиять на вашу прибыль.Ваш малый бизнес может сэкономить деньги за счет совместного использования оборудования, такого как принтеры и серверы, а также таких услуг, как доступ в Интернет. Быстрая и надежная сеть, построенная с помощью маршрутизаторов, также может расти вместе с вашим бизнесом, поэтому вам не нужно постоянно перестраивать сеть и покупать новые устройства по мере расширения бизнеса.

    Повышение безопасности

    Маршрутизаторы

    могут помочь вам защитить ценные бизнес-данные от атак, если они предлагают встроенные брандмауэры или веб-фильтрацию, которая проверяет входящие данные и блокирует их по мере необходимости.

    Включение защищенных удаленных подключений

    Маршрутизаторы

    помогают вашему бизнесу обеспечивать безопасный удаленный доступ для мобильных сотрудников, которым необходимо общаться с другими сотрудниками или использовать бизнес-приложения. Это распространенный сценарий для многих предприятий, в которых есть виртуальные команды и надомные надомные сотрудники, которым необходимо обмениваться важной деловой информацией в любое время дня и ночи.

    Создание сетей малого бизнеса с маршрутизаторами

    Инвестируйте в коммутаторы и маршрутизаторы бизнес-класса

    Потребительские или домашние сетевые продукты не поспевают за проблемами роста бизнеса.

    Создавайте сети, которые могут расти со временем

    Таким образом, вы можете добавлять функции и возможности, когда это необходимо, например, видеонаблюдение, VoIP, интегрированный обмен сообщениями и беспроводные приложения.

    Выберите надежные и избыточные маршрутизаторы

    Это обеспечивает непрерывность бизнеса, необходимую для быстрого восстановления после непредвиденных и разрушительных событий, таких как стихийные бедствия.

    Что такое роутер и как он работает?

    Маршрутизатор — это устройство, которое обменивается данными между Интернетом и устройствами в вашем доме, которые подключаются к Интернету.Как следует из названия, он «маршрутизирует» трафик между устройствами и Интернетом.

    Если у вас дома правильный роутер, вы сможете пользоваться более быстрым интернетом, защитить свою семью от киберугроз и избежать раздражающих мертвых зон Wi-Fi.

    Не нужно быть компьютерным гением, чтобы знать, что может предложить хороший маршрутизатор. Все, что нужно, — это знать, для чего вам это нужно. Понимание того, как работают роутеры, поможет вам выбрать правильное оборудование для дома.

    Как работают роутеры?

    В обычном доме есть множество подключенных к Интернету устройств — персональные компьютеры, планшеты, смартфоны, принтеры, термостаты, смарт-телевизоры и многое другое. С вашим маршрутизатором эти устройства образуют сеть. Маршрутизатор направляет входящий и исходящий интернет-трафик в этой сети самым быстрым и эффективным способом.

    Информация, передаваемая в вашей домашней сети, может представлять собой электронное письмо, фильм или прямую трансляцию с вашей детской камеры, каждая из которых занимает разную полосу пропускания.Обеспечение быстрой и правильной доставки информации — это большая задача, которая становится все больше. По мере того, как вы добавляете все больше и больше устройств — подумайте об Интернете вещей — вы просите свой маршрутизатор делать больше.

    Чем модемы отличаются от роутеров

    Маршрутизатор и ваши устройства — не единственные компоненты вашей домашней сети. Еще есть модем. Фактически, без модема у вас была бы только локальная сеть без доступа к Интернету.

    Задача модема — доставить Интернет-услуги от вашего провайдера в ваш дом.Затем он подключается к вашему маршрутизатору, обеспечивая подключение к Интернету в вашей домашней сети.

    Когда большая часть интернет-услуг предоставлялась по телефонным линиям, модемы обеспечивали связь между цифровыми устройствами в вашем доме и аналоговыми сигналами, используемыми на телефонных линиях. В современных подключениях к Интернету, включая кабельные и спутниковые, модемы играют аналогичную, но другую роль.

    Какие бывают типы маршрутизаторов?

    Когда дело доходит до маршрутизаторов, вам следует учитывать только два типа:

    1. Беспроводные маршрутизаторы .Беспроводной маршрутизатор подключается непосредственно к модему с помощью кабеля. Это позволяет ему получать информацию из Интернета и передавать информацию в Интернет. Затем маршрутизатор создает и связывается с вашей домашней сетью Wi-Fi с помощью встроенных антенн. В результате все устройства в вашей домашней сети имеют доступ в Интернет.
    2. Проводные маршрутизаторы . Проводной маршрутизатор напрямую подключается к компьютерам через проводные соединения. Обычно у них есть порт, который подключается к модему для связи с Интернетом.Другой порт — или порты — позволяет проводному маршрутизатору подключаться к компьютерам и другим устройствам для распространения информации.

    Что искать в роутере

    Большинство интернет-провайдеров (ISP) предоставляют вам маршрутизатор и модем — или их комбинацию — за абонентскую плату, которая со временем может увеличиваться. Эти маршрутизаторы могут не подходить для вашего использования, поэтому вы можете подумать о покупке того, который лучше соответствует вашим потребностям. Перед покупкой роутера обратите внимание на несколько вещей.

    Покрытие Wi-Fi

    Сигналы

    Wi-Fi в доме во многом зависят от размера дома и барьеров, которые не позволяют сигналам достигать места назначения. Камины, зеркала и толстые стены — это всего лишь несколько распространенных препятствий, которые блокируют сигналы Wi-Fi. Ищите маршрутизатор, способный добраться до дальних углов вашего дома. Кроме того, поищите тот, у которого есть ячеистая сеть, чтобы расширить возможности Wi-Fi в доме.

    Производительность Wi-Fi

    Маршрутизатор со временем изменился.Убедитесь, что ваш маршрутизатор использует новейшие технологии и имеет обновленную прошивку. MU-MIMO — одна из таких новых технологий. Это означает многопользовательскую технологию с несколькими входами и выходами. Это позволяет маршрутизаторам Wi-Fi обмениваться данными с несколькими устройствами одновременно. Это уменьшает время ожидания и увеличивает скорость сети.

    Безопасность Wi-Fi

    Киберпреступники могут проникнуть в вашу домашнюю сеть и установить на ваши устройства вредоносные программы и вирусы. Они работают с целым арсеналом инструментов для получения доступа к вашей личной и финансовой информации.Наличие маршрутизатора, обеспечивающего защиту на уровне сети, может помочь защитить от кибератак в порту входа. Ищите маршрутизатор со встроенными функциями безопасности, такими как автоматические обновления, карантин устройства и подписанные обновления прошивки.

    Элементы управления Wi-Fi

    Маршрутизаторы

    стали очень важной частью подключенного дома. Убедитесь, что вы покупаете маршрутизатор, которым легко управлять. Новейшие маршрутизаторы просты в установке и использовании. Некоторые поставляются с удобными приложениями, которые помогут вам с гостевыми сетями, родительским контролем, ограничениями времени пользователя и управлением сетью.

    Независимо от того, настраиваете ли вы новый маршрутизатор у себя дома или модернизируете существующий, убедитесь, что вы знаете, как работает ваш новый маршрутизатор, и спроектирован ли он для ваших нужд.

    Электрогенератор | инструмент | Британника

    Электрогенератор , также называемый динамо-машиной , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередачи для бытовых, коммерческих и промышленных потребителей.Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

    Механическая мощность для электрогенератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из нескольких источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели.Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

    Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение направления в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

    Генераторы синхронные

    Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение со временем позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Частной формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1.Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены, и в результате получится одна и та же форма. Тогда в идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидно, когда ниже будут описаны основные компоненты и характеристики такого генератора.

    Синусоидальная волна.

    Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

    Ротор

    Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в прорези, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна наружу вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

    Элементарный синхронный генератор.

    Encyclopædia Britannica, Inc.

    Статор элементарного генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены друг с другом изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

    Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

    Структура ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *