Желтый налет на изоляторе свечи зажигания. Причины появления
Рано или поздно, но все водители сталкиваются с регулярной проблемой замены свечей. И те, кто не привык пользоваться услугами автомехаников и предпочитает разобраться во всем сам, очень часто становятся свидетелями образования нагара на свечах зажигания. Желтый налет на изоляторе свечи зажигания, или коричневый налет на свечах образовывается по определенным причинам, и их характер довольно часто отличается друг от друга. В этой статье мы попытаемся разобраться в них, а также объясним, как избежать такой участи в будущем.
Коричневый налет на изоляторе свечиОсобенности использования свечей зажигания
Для начала следует разобраться в том, почему свечи зажигания подвержены подобным угрозам. Дело в том, что в процессе эксплуатации автомобиля именно они ответственны за создание искры, необходимой для воспламенения воздушно-топливной смеси. Так как условия работы этого приспособления «тяжелые», со временем свечи зажигания подвергаются деформациям, и постепенной потере собственных свойств.
Подобное устройство день за днем подвергается постоянному воздействию как химических факторов (влияние на свечу реактивов и веществ химического происхождения), так и физических. Находясь в условиях постоянного теплового окружения, свечи зажигания «потерпают» от температуры сгораемой смеси, и собственноручно созданной искры.
Нагар на свечах зажиганияНагар на изоляторах свечей зажигания
Очень часто, при смене свечей можно наблюдать загрязнение на ободках свечного изолятора (в норме, чаще всего представленным белым корпусом, в заводском виде). Следствий у этой проблемы есть несколько, и их степень определяется по характеру имеющейся деформации. Одним из таких примеров может быть прорыв газов/продуктов горения. Чаще всего это случается по вине производителя (серийный брак, использования дешевого сырья при производстве).
Коричный налет на изоляторе появляется в следствии коронного разряда. Этот процесс подразумевает ионизацию воздуха, окружающего свечу зажигания, при длительном воздействии которого у последней наблюдается ослабление изоляционной функции корпуса. Стоит отметить, что появлению налёта способствует и нарушение целостности самого изолятора. У свечей с трещиной между изолятором и корпусом свечи образовывается зазор, благодаря которому свеча постепенно портиться и начинает пробивать.
Не всегда, к слову, свеча с коричневым налетом на изоляторе сигнализирует о каком-то нарушении. Многие производители на упаковках своих товаров отмечают, что коричневый, или темно-коричневый налет может появляться в следствии пригорания зажигательной смеси, прилипшей к корпусу изолятора.
Читайте также: Иридиевые свечи зажигания, преимущества и недостаткиКоричневый налет на свечах
Некоторые водители автомобилей, использующих бензиновое топливо добросовестно подходят к выбору заливаемой «основы». Ни для кого не секрет, что первые поколения топливного ряда не отличаются «чистотой», и очень часто содержат большое количество примеси и отложений, невидимые для невооруженного взора.
Топливо низкого качества довольно часто является виновником засорения присадок. На практике, такое влияние проявляется коричневым нагаром на изоляторе свечи зажигания. Инжектор автомобиля, в связи с засорением, не способен справится со своими обязанностями, и бензин начинает полностью заливать свечу. Электрод стандартной свечи не способен выжечь весь бензин, которые его окружает, и часть его оседает на стенках самого устройства зажигания.
На деле, постоянное нахождение во влажных условиях ведет к неисправностям свечей зажигания. Ранее осевший на стенках бензин высыхает, и вырабатываемая искра подвергает еще большему тепловому воздействию саму систему зажигания. Образованный коричневый нагар на изоляторе свечи зажигания и есть продукт повторного использования бензина.
Очень часто, водители, столкнувшиеся с подобной проблемой, жалуются на то, что двигатель начинает «троить». Не исключено, что никаких проблем с эксплуатацией не возникнет, и о подобном инциденте водитель авто узнает только во время прохождения очередного ТО.
Желтый цвет налета на свечах зажигания
Ничего страшного в такой ситуации не прогнозируется, и необоротных изменений от недолгого использования дешевого топлива не предвидится. Другое дело, если подобная проблема было проигнорирована. В таких ситуациях, водителей, помимо проблем со свечами ожидают системные нарушения всей силовой установки.
Решить данную проблему можно легко и просто. Эксперты советуют перейти на другой вид топлива, заменить масло, и предварительно детально промыть топливную систему.
Заключение
Обращайте огромное внимание на собственные свечи, во время их периодичной замены. Имеющийся на них налет – это первый индикатор возможных нарушений в двигателе автомобиля. В норме, после проводимой диагностики нагар на свечах отсутствует или имеет слегка сероватый цвет. Следует помнить, что почти все нарушения со свечами зажигания связаны с использованием некачественного топлива. Коричневый изолятор свечи, или другого цвета сигнализируют о срочной замене топливной основы.
Почему образуется коричневый ободок на изоляторе свечи зажигания. Что это означает?
Верхняя часть свечей зажигания при эксплуатации в автомобиле очень часто обрамляется ободком коричневатого оттенка. По этому поводу многие автомобилисты волнуются и конечно ищут причины появления обода.
Появление коричневого налета должно быть связано с определенными проблемами. Так полагают многие автомобилисты.
На просторах интернета есть множество предположений по этому поводу.
Вот две основные причины, которые якобы приводят к образованию ободка на верхней части свечей зажигания: выход выхлопных газов через свечной колодец и пробой в самих свечах.
Чтобы отыскать истину, надо пообщаться с опытным мотористом, пишут СМИ.
Что все-таки происходит?На самом деле ободок на использовавшихся свечах зажигания ( цвет может меняться от томно -желтого до коричневого ) абсолютно ровный расположенный только в верхней части свечи не имеет отношения ни к выхлопу из свечного колодца , ни к пробою .
Если уж речь зашла о двух наиболее распространенных причинах, то давайте затронем и их. Причины , как у же сказано, не верные .
При выхлопе из свечного колодца на свече будет образовываться нагар . Со сути это простая копоть, сажа, если хотите. Нагар не образует ровных краев и его легко устранить при помощи механического воздействия. Пробой свечи то же имеет своеобразный вид . Пробой может оставлять на изоляторе дефекты , цвет которых так же будет черным.
Форма дефектов больше напоминает вытянутые овалы. Так что и здесь коричневые круги не в тему.
На самом деле проблема в другом. Точнее даже не проблема, а верное объяснение. Коричневые круги на свечах называют еще коронными пятнами. Это скорее профессиональный термин, которым пользуются автомеханики и автопроизводители.
Виной явления стало воздействие коронных разрядов на изолятор , которое возникает у электродов в неоднородных полях. И это норма!
Подобные воздействия имеют место быть всегда у проводников под высоким напряжением. Электрический разряд притягивает к верхней части свечи частицы масла.
Это нормально?Эти частицы , в свою очередь , оседают образовывая налет, что способствует появлению небольшой утечки тока. Все это предусмотрено и считается абсолютно нормальным явлением.
Почему же ободки на свечах бывают разного размера и цвета? Потому что сила разрядов связана с герметичностью колодца. Время и нагрузка приводят к износу наконечников катушек, а это напрямую влияет на герметичность и на силу коронных разрядов.
Потому цвет и размер так различаются. Кстати, на новых автомобилях такое явление большая редкость. Свечи практически не имеют коронных ободков. В любом случае коричневый ободок на свечах зажигания не повод к волнению . Это явление ни коим образом не говорит о серьезных поломках .
Не стоит бить тревогу и искать причины для серьезных опасений. Как уже было сказано выше , явление считается нормой и не требует каких либо вмешательств и уже тем более ремонта.
Автомобилисты могут не волноваться по поводу появления коронного ободка.
Работаю в автосервисе и свечи с таким коричневым ободком попадаются не так часто. В основном на машинах, у которых имеется проблема с коррекцией угла зажигания. И соответственно с нарушением воспламенения топливовоздушной смеси.
Как правило, это связано с использованием низкооктанового или некачественного бензина. Коричневый ободок на изоляторе ничто иное как следы частиц рабочих газов, которые прорываются из цилиндра через резиновое уплотнение под вальцовкой.
Если обратить внимание, то можно заметить, что цвет нагара на изоляторе снаружи идентичен цвету нагара на внутренней его части, которая обращена в камеру сгорания.
А если такое явление заметили на полностью исправном двигателе, это означает, что Ваши свечи изготовлены на обочинах индийских дорог.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Почему образуется коричневый ободок на изоляторе свечи зажигания, и о чём он говорит. | AVtozal.net
Верхняя часть свечей зажигания при эксплуатации в автомобиле очень часто обрамляется ободком коричневатого оттенка . По этому поводу многие автомобилисты волнуются и конечно ищут причины появления обода .
Появление коричневого налета должно быть связано с определенными проблемами . Так полагают многие автомобилисты .
На просторах интернета есть множество предположений по этому поводу.
Вот две основные причины , которые якобы приводят к образованию ободка на верхней части свечей зажигания : выход выхлопных газов через свечной колодец и пробой в самих свечах .
Чтобы отыскать истину , мне пришлось пообщаться с опытным мотористом .
На самом деле ободок на использовавшихся свечах зажигания ( цвет может меняться от томно -желтого до коричневого ) абсолютно ровный расположенный только в верхней части свечи не имеет отношения ни к выхлопу из свечного колодца , ни к пробою .
Если уж речь зашла о двух наиболее распространенных причинах , то давайте затронем и их . Причины , как у же сказано , не верные .
При выхлопе из свечного колодца на свече будет образовываться нагар . Со сути это простая копоть , сажа , если хотите .
Нагар не образует ровных краев и его легко устранить при помощи механического воздействия .
Пробой свечи то же имеет своеобразный вид . Пробой может оставлять на изоляторе дефекты , цвет которых так же будет черным .
Форма дефектов больше напоминает вытянутые овалы . Так что и здесь коричневые круги не в тему .
На самом деле проблема в другом . Точнее даже не проблема , а верное объяснение . Коричневые круги на свечах называют еще коронными пятнами .
Это скорее профессиональный термин , которым пользуются автомеханики и автопроизводители .
Виной явления стало воздействие коронных разрядов на изолятор , которое возникает у электродов в неоднородных полях . И это норма !
Подобные воздействия имеют место быть всегда у проводников под высоким напряжением .
Электрический разряд притягивает к верхней части свечи частицы масла.
Эти частицы , в свою очередь , оседают образовывая налет , что способствует появлению небольшой утечки тока . Все это предусмотрено и считается абсолютно нормальным явлением .
Почему же ободки на свечах бывают разного размера и цвета ? Потому что сила разрядов связана с герметичностью колодца .
Время и нагрузка приводят к износу наконечников катушек , а это напрямую влияет на герметичность и на силу коронных разрядов .
Потому цвет и размер так различаются . Кстати , на новых автомобилях такое явление большая редкость . Свечи практически не имеют коронных ободков .
В любом случае коричневый ободок на свечах зажигания не повод к волнению . Это явление ни коим образом не говорит о серьезных поломках .
Не стоит бить тревогу и искать причины для серьезных опасений . Как уже было сказано выше , явление считается нормой и не требует каких либо вмешательств и уже тем более ремонта .
Автомобилисты могут не волноваться по поводу появления коронного ободка .
Если Вам была полезна наша информация, поставьте пожалуйста палец вверх и подпишитесь на канал !
Желтый налет на свечах зажигания причины
Здравствуйте дорогие читатели.
Наблюдая ситуацию в автосервисе: автослесарь «80 уровня», при осмотре (не моей машины) свечей зажигания и выявления у них желтого налета рекомендовал их к категоричной замене. Мужик быстренько метнулся и через 5 минут был на месте с комплектом новых свечей. Пока ждал своей очереди по дозаправке кондиционера, решил глянуть на свои, «бес палева», так сказать. Оказывается все мои свечи были с «ореолом», пробег около 10 т. км.
Решил метнуться вслед за мужиком, прикидывая какие взять свечки по- круче или нет. Пока думал, подошла моя очередь… вообщем позже решил разобраться что к чему. И вот что я нарыл.
Вариантов отложений на внешнем изоляторе бывает три
1) вариант:
Прорыв газов … .
Прорыв газов характеризуется наличием ЧЁРНОЙ копоти. Наверное, каждый знает, какие следы появляются на деталях выхлопной системы, когда есть негерметичность — чёрная копоть.
Если интересующийся не поленится и грамотно воспользуется гуглом, то сможет найти заявления людей, реально столкнувшихся с прорывом газов. А именно ЧЁРНЫЙ налёт ( копать ) на изоляторе.
Выглядит это примерно так ( фото из интернета ):
Следующие два варианта перекликаются друг с другом. Поэтому, чтобы не писать одного и того же, рекомендую прочитать, осмыслить, и прочитать их ещё раз. Тогда в голове легко уляжется, что, как и почему.
Второй, и третий вариант появляются из-за следующего эффекта.
Коронный разряд — это явление, часто наблюдаемое вокруг изолятора свечи.
Воздух, окружающий свечу, становится сильно ионизированным, что ослабляет изоляционные свойства. Возникает частичный электрический разряд, который создает слабо голубое свечение вокруг изолятора свечи.
Материал наконечника свечи со временем отвердевает, что ослабляет плотность крепления наконечника к изолятору, и увеличивает вероятность разрядного напряжения. При плохой посадке от разрядного напряжения остаётся след.
Итак,
2) вариант:
След от коронного разряда, СВЕТЛО-ЖЁЛТЫЙ, ЖЁЛТЫЙ, СВЕТЛО-КОРИЧНЕВЫЙ.
3) Вариант:
То же самое, только цвет КОРИЧНЕВЫЙ, ТЁМНО-КОРИЧНЕВЫЙ. Появляется при неплотном наконечнике и при наличии масла в свечном колодце. Масло пригорает к изолятору и даёт такой цвет. Вот так это выглядит:
Наглядно видно, что не только газы идут снизу вверх:
Диагностика работы двигателя по свечам зажигания
В данной статье мы рассмотрим способы сделать диагностику работы инжекторного двигателя по внешнему виду свечей зажигания. Рассмотрим причины появления черного нагара, зольных отложений на свечах зажигания.
ДВС в хорошем состоянии
На фото №1 изображена свеча, вывернутая из двигателя работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему — это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.
Черный нагар и повышенный расход
На фото №2 типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора или неисправность инжектора), засорение воздушного фильтра.
Белый нагар и обедненная смесь
На фото №3 наоборот пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева свечи(фото 3.1) её плавления (фото 3.2), и перегрева камеры сгорания, а перегрев камеры сгорания — прямой путь к прогару выпускных клапанов.
Красный нагар и избыток присадок
Юбка центрального электрода свечи изображенной на фото №4 имеет характерный красноватый оттенок, этот цвет можно сравнить с цветом красного кирпича. Это покраснение вызвано работой двигателя на топливе содержащем избыточное количество присадок имеющих в своем составе металл. Длительно использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.
Желтый налет и долгая стоянка
Фото № 5. Свеча имеет ярко выраженные следы масла, особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки, имеет обыкновение после запуска «троить» некоторое время, а по мере прогрева работа стабилизируется. Причина этого неудовлетворительное состояние масло отражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.
Поломка клапанов проблемы с цилиндрами
Свеча на фото № 6 вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла смешенного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого — разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель «троит» уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один — ремонт.
Разрушение центрального электрода и детонация
Фото № 7 это полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованная свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное на что можно надеяться так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров. Но это зависит от человека, грешен он или нет (шутка). Если говорить об этой конкретной свече, то ее хозяина Бог миловал.
Зольные отложения и залегание колец
Фото № 8 Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста — сгорание масла вследствие выработки или залегания маслосъемных поршневых колец, неудовлетворительного состояния масло отражательных колпачков. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное, синее дымление, запах выхлопа похож на мотоциклетный.
Разрушение керамического изолятора свечи зажигания
Фото № 9 Разрушение керамического изолятора. Причины возникновения: резкое изменение температуры, например при охлаждении свечи, выкрученной с горячего мотора, в холодной воде. В некоторых случаях разрушение может быть вызвано дефектом самой свечи (брак или подделка), либо механическим повреждением, например в результате падения.
Разрушение и эрозия электрода свечи зажигания
Как не странно, многие неисправности связанны с неправильным подбором свечи зажигания по автомобилю. Часто экономия средств на покупку свечей и подбор дешевых аналогов влечет за собой дорогостоящий ремонт двигателя авто.
Свечи зажигания созданы для воспламенения воздушно-топливной смеси. Данное устройство работает в довольно тяжелых условиях, т.к. на них воздействуют разные химические вещества и тепловые факторы, включая температуру от искры при зажигании, температуру при сгорании смеси.
Периодичность замены свечей и основные причины налета
Свечи зажигания разняться по виду и по месту назначения, в автомобилестроении повсеместно используются искровые свечи зажигания, срок жизни которых определяется видом двигателя, видом топлива для мотора и рекомендациями производителя как автомобиля, так и свечей. Свечи зажигания для моторов, работающих на сниженном природном газе, работают не более 10 000 км пробега, тогда как свечи для дизельных моторов следует заменять через 12 000 км, а для бензиновых силовых агрегатов через 15-16 000 км, то есть каждое ТО.
При возникновении проблем с мотором первое, что нужно сделать – провести диагностику свечей зажигания, т.к. именно они в 85% случае являются самой распространённой причиной возникновения вибраций при езде и при легком уводе автомобиля в сторону. Диагностику свечей можно произвести самостоятельно, воспользовавшись инструкцией по замене свечей зажигания. Вытянув одну из свечек, по налету можно определить вид проблемы существующей в системе авто, от чего свечка не в силах работать исправно. Различают следующие виды наслоенией на свечках по цвету:
Цвет нагара – это цвет сожжённой примеси, содержащейся в топливе. В идеале, естественные примеси в хорошем топливе практически никак не откладываются на свечах, разве что в виде легких солевых отложений, дающие слегка сероватый цвет. Стоит отметить, что не только по цвету, но и по структуре и плотности нагара (налета) определяют проблемы в моторе.
Причин наслоения может быть вселенская туча, но из всего разнообразия выбора самыми распространенными являются:
- Некачественное топливо;
- Сбой в работе топливного фильтра;
- Брак свечи;
- Несоответствие свечи мотору.
Белый налет на свечах зажигания
Многие автолюбители при диагностике свечей ожидают увидеть черный смолистый нагар, сажу или еще, что страшнее, однако в 20% случаев нагар может быть белым. Белый налет на свечах зажигания свидетельствует о проблемах с качеством топлива и в значительном уменьшении топлива в смеси для сгорания, если белый налет немного шероховат на прикосновение, при глянцевом виде налета – причины в частом перегреве мотора. В первом случае проблемы почти не существует, стоит только почистить свечу и установить обратно, не мешало бы еще поменять заправку и бензин на качественный, во втором случае чисткой не обойтись. Основными причинами перегрева могут быть:
- При условии, что свечка не подходит под данный тип двигателя;
- Впускной трубопровод разгерметизирован, из-за чего воздух чаще забирается извне;
- Проблемы с системой охлаждения, чаще из-за несвоевременной замены охлаждающего элемента;
- Проблемы в работе радиатора;
- Плохая калибровка зажигания.
Довольно часто случается, что на поверхности имеется не белый налет, а слегка желтоватый, что характерно для проблем с повышением температуры в камере сгорания при работе мотора на максимуме оборотов. Для предотвращения перегрева следует переключаться передачи ранее, чем мотор дойдет до 4 000- 5 000 оборотов в минуту.
Красный налет на свечах зажигания
Вторым по популярности налетом является красный. Этот тип налета в большинстве случаев не опасен и просто показывает наличие активных полезных примесей в горючем. В топливо сегодня добавляют огромное количество различных присадок и примесей для защиты внутренних компонентов двигателя и для лучшей возгораемости. Именно эти примеси и дают красноватый оттенок, бояться не стоит, если налет изменил только свет и не выглядит как скопление вещества. Данный налет указывает на качество горю чего или масла. При насыщенно-красном примесей много дабы улучить качества топлива, но само горючее отвратного качества, светловато-красный налет говорит о минимальном количестве присадок и лучшем качестве топлива. Часто, налет может иметь вид ржавчины, но без скопления вещества. При налете красного цвета не стоит ремонтировать мотор или системы автомобиля, достаточно просто заменить бензин, масло и свечи.
Черный налет на свечах зажигания
Черный налет – самый опасный, он может быть выражен в виде налета и в виде нагара сажи, во втором случае с мотором все плохо и его нужно везти на СТО для диагностики и ремонта. Данный тип налета в 90% случае является самым распространенным вариантом отложений на свече. Черный цвет в виде налета свидетельствует о сильно завышенном количестве топлива в воздушно-топливной смеси, что приводит к более быстрому износу механизмов мотора. В 8 из 10 случаев, когда на свече есть черный налет – это свидетельствует о существенных проблемах с мотором или топливным насосом. Налет может быть разным и сопровождаться или нагаром или нахождением на свече других элементов, по типу моторного масла, не сгоревшего бензина и тд.
Теперь же разберёмся с типами черного налета:
- Сухой налет – не соблюдена пропорция содержания топлива и воздуха в смеси, что может свидетельствовать о:
- проблемах с карбюратором;
- проблемы с проходимостью в воздушном фильтре, из-за чего для смеси недостаточно воздуха, что приводит к превышению части топлива в смеси;
- неисправности обогатителя;
- низкой компрессии;
- неисправность свечи, где искра не имеет достаточной силы для зажжения смеси.
Маслянистый черный налет с нагаром
- Черный налет с маслянистыми черно-коричневыми отложениями свидетельствует о том, что моторное масло просачивается в камеру сгорания и сгорает не полностью из-за недостаточной горючести. Обычно масло проникает из-за ослабления колец герметизации и клапанных колпачков.
Желтый налет на свече зажигания
Желтый налет на свече зажигания может быть следствием проблем с недостаточным количеством топлива в смеси для сжигания, пожелтение изолятора указывает на то, что топливо сильно обогащено свинцом, в этом случае лучше сменить топливо, масло мотора, промыть топливную систему и установить новые свечи.
Коричневый налет на свече зажигания
Коричневый налет на свече зажигания образуется при полном погружении свечи в бензин, что не позволяет нормально образоваться искре. Бензин заливает свечу полностью, не позволяя сгореть всему топливу и часть его, избавившись от лишней влаги, оседает на свече коричневым цветом. Главная проблема – карбюратор или инжектор, не справляющиеся со своей работой по причине некачественного топлива или засорения от присадок.
Другие виды отложений на свечах их диагностика
При появлении слоя масла на юбке свечи, следует проверить клапан, т.к. он может не работать из-за полного засорения и из-за деформации перегородок колец, из-за чего металлические частицы попадают в место сгорания. При сгорании топлива со стружками происходит приваривание металла к стенкам камеры, что влечёт потерю в производительности, а потом выливается в неработоспособность цилиндра. Помимо всего перечисленного, расход топлива увеличивается на 100-150%, главным решением неисправности станет капитальный ремонт мотора.
Если при длительной стоянке после заведения машины первый раз наблюдается троение двигателя, при диагностике свечей имеется легкое маслянистое наслоение. Такое наслоение – это следствие долгой стоянки, после прогрева проблема исчезает, и мотор начинает работать в обычном режиме. При диагностике стоит вытереть насухо свечи и установить их обратно, через 15-20 км пробега машину стоит еще раз продиагностировать, если на свече снова появилась маслянистая пленка – нужно ехать в СТО или в сервисный центр на диагностику и ремонт.
Свеча как зеркало состояния двигателя
Обслуживать свечи зажигания несложно. Необходимо производить регулярный контроль состояния свечей, наиболее педантичные водители время от времени тщательно очищают свечи от отложений и налетов, появляющихся на поверхностях электродов. Замену свечей необходимо производить после достижения пробега, рекомендуемого автопроизводителями. Определенной цифры, какой должен быть пробег при замене свечи, нет. Тут дело обстоит так же, как и со сроками замены моторных масел. Масла начинают ощутимо терять свои эксплуатационные качества после 10 00–15 000 км пробега. Так и свечи зажигания сохраняют свои характеристики примерно при пробеге в 20 000–30 000 км, а потом начинают работать все хуже и хуже.
Специалисты советуют при каждой замене масла, т.е. через каждые 10 000–15 000 км пробега, выкручивать все свечи и внимательно их осматривать. При этом желательно их очистить обычной щеткой с мягким, густым ворсом. Такая процедура займет при хорошем доступе к свечам около 15 минут, зато как минимум улучшится работа системы зажигания.
Конечно, на форумах автомобилистов можно найти рассказы водителей о том, что они не «прикасались» к системе зажигания, в т.ч. и к свечам, уже нескольких лет и при этом проехали чуть ли не 100 000 км, а машина по-прежнему работает «как часы». Но ориентироваться на подобные сообщения не стоит.
Безусловно, сегодня разработано большое число видов свечей зажигания, и, например, свечи с несколькими минусовыми электродами работают надежнее и служат дольше обычных 2-электродных, а биметаллические свечи, в которых наконечники электродов выполнены из иридия, вообще выхаживают в 3–4 раза дольше общепринятых норм, и 100 000 км пробега для них не предел.
Но такие свечи очень дороги, а при использовании обычных считается, что их эксплуатационный ресурс составляет около 30 000 км пробега автомобиля. Надо помнить, что в течение одной минуты свеча зажигания выполняет тысячи рабочих циклов. На контактных поверхностях электродов протекают сложные физико-химические реакции, имеют место коррозия и образование налетов из веществ, образующихся в результате сгорания топливной смеси. Меняются зазоры между электродами, электроды подгорают, трескается юбка центрального электрода. Повреждение и износ свечей отражаются прежде всего на работе двигателя – она становится неровной за счет ненадежного искрообразования, снижается мощность, возникают проблемы с запуском двигателя.
Качественная диагностика – и бесплатно?
Благодаря несложным действиям со свечами можно получить достоверную информацию о состоянии двигателя и, конечно, самих свечей. Достаточно часто возникают ситуации, когда в свече зажигания трескается изолятор или отгорают электроды. Такую свечу необходимо оперативно заменить, и поломка сразу обнаруживается при осмотре свечи.
В идеальном варианте осмотр свечей нужно проводить после длительной загородной поездки на расстояние 200–250 км. Такие требования связаны с тем, что буквально через 10–20 минут работы двигателя на холостых оборотах электроды свечей покрываются свежим темным налетом и анализировать вид свечей становится практически невозможно.
Для наиболее достоверного и качественного анализа их внешнего вида желательно, чтобы перед началом поездки свечи быть чистыми. Нормальный вид свечи – это чистый керамический изолятор в верхней части и почти идеально блестящая контактная гайка, имеющая постоянный контакт с наконечником провода высокого напряжения. Если на гайке имеются следы коротких замыканий, а керамический изолятор закопчен, то желательно заменить такую свечу. Та часть свечи, что работает в камере сгорания, должна быть покрыта серым, серо-белым или пепельного цвета налетом. Не должно быть на свече признаков перегрева, следов горения на электродах, каких-либо механических повреждений, выгорание электрода должно быть умеренным.
После остывания двигателя свечу снимают, предварительно отсоединив провода высокого напряжения. Ключом отворачивают свечу на один оборот, после чего протирают от пыли и грязи головку цилиндра, тщательно очищают углубление со свечой, используя кисточку, сжатый воздух и т.д. В процессе демонтажа свечи недопустимо, чтобы мусор и пыль попали на резьбу в блоке либо в камеру сгорания.
Что бы это значило?
Закопченные свечи. На выкрученной свече обнаруживается черный матовый, можно сказать, бархатистый налет с сухой копотью. Он появляется при сгорании слишком богатой топливной смеси. Причиной могут быть также загрязненный воздушный фильтр, неисправность воздушной заслонки или поломка кислородного датчика. В этом случае в двигатель попадает меньший объем воздуха, чем требуется для полноценного сгорания топлива. Еще одним возможным поводом может быть использование свечей с калильным числом, не соответствующим требованиям автопроизводителя. В этом случае появляются сложности с запуском двигателя, возникают пропуски вспышек. Если замена воздушного фильтра и свечей не меняет картины, то следует отрегулировать карбюратор, устранить неисправность инжектора, дополнительно проверить систему управления двигателем.
Также причиной подобных налетов на свечах может оказаться некачественная работа газовой установки либо эксплуатация двигателя в режиме поездок на короткие дистанции, часто с недостаточно разогретым двигателем.
Свеча «залита» маслом. Если нижняя часть свечи покрыта жирным блестящим налетом либо остатками несгоревшего масла, это означает, что в камеру сгорания попадает значительное количество моторного масла. Нужно проверить уровень масла в двигателе по щупу и выяснить, не превышается ли «максимум». В противном случае это может значить износ поршневых колец, направляющих втулок, маслосъемных колпачков, увеличенный внутренний диаметр цилиндра. Возможной причиной также может оказаться неправильный подбор свечей, выбор слишком «холодных».
Если речь идет о 2-тактном двигателе, то может оказаться, что просто много масла находится в топливной смеси. В этом случае, кстати, как и в случае с калильным числом, могут появиться проблемы с запуском двигателя.
Свеча с красноватым налетом. Вид такой свечи характеризуется толстым желто-коричневым плотным налетом, иногда с зелеными включениями на юбке центрального электрода. Этот налет – ферроцен, металлоорганическое соединение класса сэндвичевых соединений, добавляемое в топливо для превращения низкооктанового бензина в высокооктановый. Очевидно, что такой вид свечей говорит о некачественном, мягко говоря, бензине. При значительном накапливании электропроводного налета может возникнуть утечка тока при работе системы зажигания, свеча перестанет работать, возникнут проблемы с зажиганием и т.д.
Свеча со следами пепла. Значительные налеты на внешних частях электродов в виде пепла говорят всегда о повреждении двигателя. Консистенция такого налета может быть рыхлой или зашлакованной. Пепел образуется из присадок топлива и масла, а причину следует искать либо в применении некачественного топлива, либо в механическом износе деталей двигателя, попадании в цилиндры охлаждающей жидкости вследствие повреждения прокладки головки блока цилиндров. Расход масла заметно увеличивается.
Разрушение центрального электрода. Нередко возникают экстремальные ситуации, требующие немедленной замены свечи и срочных ремонтных мероприятий. Таким обстоятельством могут стать отсутствие центрального электрода, растрескавшаяся керамическая юбка.
Причин того, что электрод свечи плавится, может быть несколько, однако в любых вариантах это является следствием действия на свечу высокой температуры. Поводом могут послужить неправильно выставленный угол зажигания, длительная работа с детонацией, использование низкооктанового топлива, дефектный распределитель зажигания. Если частицы электрода застрянут под выпускным клапаном, то потребуется ремонт головки блока.
Сильный износ минусового электрода. В этом случае проявления могут быть аналогичны тем, что возникают и при износе центрального электрода, однако причины совсем другие. Это могут быть качество и состав топлива либо моторного масла: наличие агрессивных компонентов или образование нагара может вызывать сильную турбулентность в камере сгорания, и тепловой фактор в данном случае на износ электрода не влияет.
Вообще в износе электродов, появлении трещин в изоляторе часто виноваты сами водители. Несоблюдение сроков замены свечей отражается на работе системы зажигания в виде пропусков, особенно при разгонах. Расстояние между минусовым, «массовым» электродом и центральным оказывается увеличенным, поэтому напряжения зажигания может быть недостаточно для образования полноценной искры.
Трещины в изоляторе чаще всего возникают в случае приложения слишком большого усилия при вкручивании свечей или же при их падении на твердую поверхность. Но если в случае падения можно обнаружить дефект сразу же и не доводить до серьезных последствий в работе двигателя, то при слишком сильном затягивании свечи возникает реальная угроза выхода двигателя из строя.
Как правильно установить свечу?
Новые свечи для удаления консервационной смазки нужно перед установкой промыть в растворителе или бензине, а затем осмотреть на предмет наличия сколов, царапин – такие дефекты недопустимы. Стоит также проверить зазоры между электродами. Менять заводские зазоры нежелательно, но при установке проконтролировать зазор не помешает: при транспортировке или просто случайно свечи могли подвергаться физическому воздействию.
Перед установкой резьбу свечи смазывают графитовой либо медной смазкой, это существенно облегчит в дальнейшем выкручивание для замены или осмотра. Свечу вкручивают от руки, но при затягивании с усилием 20…30 Н/м используют динамометрический ключ. В жизни абсолютное большинство водителей затягивают свечи «на глазок», предпочитая вкручивать их с усилием, значительно превышающим рекомендованное.
Сегодня на рынке большой выбор свечей зажигания различных конструкций. Доступны многоэлектродные свечи, плазменно-форкамерные и факельные свечи, свечи с распиленными и просверленными минусовыми электродами, с биметаллическими электродами, у которых платиновые, серебряные или иридиевые наконечники. Есть сегодня даже свечи с центральным электродом, разделенным на нескольких тонких стержней.
К наиболее качественным относятся свечи, выпускаемые компаниями Bosch, Beru, DENSO, NGK, Champion, Magneti Marelli. Использование качественных свечей с нужным калильным числом заметно улучшит работу двигателя, а в случае применения отдельных конструкций, например форкамерных свечей-пушек, даже можно экономить до 10% бензина и на 30% снизить токсичность выхлопных газов.
Про свечи зажигания
Комбинация из букв и цифр на каждой свече зажигания NGK — это не просто типовое обозначение, но и логическая формула, содержащая важную информацию о функции свечи зажигания. (PDF, 120 KB)
1.1 Может ли применение недостаточного усилия при установке свечи быть причиной потери компрессии?
В случае применения недостаточного усилия при монтаже свечей существует вероятность того, что часть газов сгорания будет просачиваться по внешней стороне уплотнительной прокладки.
1.2 Что может произойти, если применить чрезмерное усилие при монтаже свечи?
Если при затяжке свечей прикладывается чрезмерное усилие, могут возникнуть различные неприятные последствия. Например, часть отработанных газов может просачиваться по внутренней поверхности уплотнительной прокладки, может произойти поломка металлического корпуса, могут измениться калильные свойства свечи. Кроме этого боковой электрод может располагаться не в оптимальном положении в камере сгорания, что, соответственно, приводит к неоптимальному воспламенению.
1.3 Можно ли использовать свечу с интегрированным резистором вместо безрезисторной свечи?
Наличие в свече резистора несколько увеличивает нагрузку на катушку зажигания. Однако если катушка исправна и справляется со своей задачей, никаких проблем при использовании резисторной свечи не будет. Более того, наличие резистора обеспечивает хорошее подавление электрического шума, который возникает при искрообразовании, что обеспечивает бесперебойную работу различных электронных систем автомобиля.
1.4 Какое влияние оказывают электроды на воспламенение?
Электроды, помимо того, что создают искру, сами оказывают существенное влияние на воспламенение. Электроды забирают часть энергии воспламенения благодаря хорошим теплопроводящим свойствам. Но в первую очередь, они являются помехой на пути распространения фронта пламени. Это влияние можно снизить, если использовать свечи с тонким иридиевым электродом.
1.5 В чём преимущество иридиевой свечи?
Иридий – очень тугоплавкий металл. Благодаря этому свойству не только увеличивается ресурс свечи, но и появляется возможность сделать центральный электрод очень тонким. Снижается влияние электродов на распространение фронта пламени, воспламенение становится более эффективным, что обеспечивает повышенную мощность и, одновременно, меньший расход топлива.
1.6 В чём особенность гибридных свечей зажигания?
Гибридные свечи имеют один основной боковой электрод и два дополнительных. В штатном режиме искрообразование происходит между центральным и основным боковым электродами. В неоптимальном режиме работы, в случае образования на изоляторе проводящего нагара, удаётся избежать пропусков зажигания с помощью технологии полуповерхностного разряда, который происходит между центральным и дополнительными «страховочными» боковыми электродами.
1.7 Если на свече произошёл поверхностный пробой между контактным терминалом и металлическим корпусом, возможно ли повторное использование такой свечи?
После того как произошёл поверхностный пробой, на изоляторе остаются проводящие углеродистые отложения в виде чёрной полосы (след от выгорания внутренней части свечного наконечника вдоль линии пробоя). Поэтому даже использование новых высоковольтных проводов не предотвратит повторного пробоя по тому же пути.
1.8 Если внутренняя часть изолятора свечи отломилась и попала в камеру сгорания, может ли она повредить двигатель?
К счастью, как правило, кусочек изолятора вылетает через выпускной клапан. Однако, в самом плохом случае, такая частичка может застрять в седле клапана или остаться в камере сгорания, и тогда вероятно повреждение двигателя.
1.9 Что происходит быстрее – искровая эрозия центрального электрода или бокового электрода?
Обычно искра перескакивает с центрального электрода на боковой, в этом случае быстрее происходит эрозия центрального электрода. Однако, в биполярной системе зажигания ситуация может быть обратной
http://www.ngk.de/ru
Устройство свечи зажигания
При всем разнообразии конструкций, любая искровая свеча зажигания (рис.9) включает 8 себя керамический изолятор, металлический корпус, электроды и контактную головку для соединения с высоковольтным проводом.
Центральный электрод установлен в канале изолятора, имеющем переменный диаметр. Головка электрода опирается на коническую поверхность канала изолятора в месте перехода от большего диаметра к меньшему. Рабочая часть центрального электрода выступает на величину от 1.0 до 5.0 мм из изолятора. Закрепление электрода в канале изолятора и герметизацию этого соединения осуществляют с использованием стеклогерметика. Он представляет собой смесь специального технического стекла и порошка металла. Стекло должно иметь коэффициент термического расширения одинаковый с этим коэффициентом у керамики. В этом случае герметизирующая пробка не разрушится при изменениях температуры в процессе эксплуатации. Порошок могалла (медь или свинец) добавляют в стекло для придания ему электрической проводимости.
Рис. 9 — Устройство искровой свечи зажигания: 1 — контактная гайка: 2 — оребрение изолятора (барьеры для тока уточки): 3 — контактный стержень: 4 — керамический изолятор: 5 — металлический корпус, б — пробка стеклогерметика. 7 — уплотнительное колыю: 8 — теплоотводящая шайба: 9 — центральный электрод. 10 — тепловой конус изолятора: 11 — рабочая камора: 12 боковой электрод -массы-: h — искровой зазор |
Сборку сердечника (изолятора в сборе с центральным электродом и контактным стержнем) осуществляют в следующем порядке. Электрод устанавливают в канале изолятора и сверху засыпают порошкообразный стеклогерметик или укладывают ого в виде таблетки. Затем в канал изолятора устанавливают контактную головку. До запрессовки стеклогерметик занимает больший объем, чем после этой операции, и контактный стержень не может полностью войти в канал изолятора Он примерно на треть длины выступает над изолятором. Заготовку нагревают до температуры 700-900 «С и с усилием в несколько десятков килограммов контактный стержень вводят о размягченный под воздействием температуры стеклогерметик. При этом он затекает в зазоры между каналом изолятора, головкой центрального электрода и контактной головкой. После остывания стеклогерметик затвердевает и надежно закрепляет обе детали в канале изолятора Между торцами электрода и контактной головки образуется герметизирующая пробка высотой от 1.5 до 7,0 мм, полностью перекрывающая канал изолятора от прорыва газов
В случае необходимости встроить в цепь центрального электрода электрическое сопротивление для подавления электромагнитных помех применяют резистивный стеклогерметик. После остывания герметизирующая пробка приобретает электрическое сопротивление необходимой величины.
Сердечник устанавливают в корпусе свечи так, что он соприкасается своей конической поверхностью с соответствующей поверхностью внутри корпуса. Между этими поверхностями устанавливают герметизирующую -теплоотводящую» шайбу (медную или стальную).
Закрепление сердечника осуществляют завальцовкой буртика корпуса на поясок изолятора. Герметизацию по соединению изолятор — корпус осуществляют методом осадки корпуса в нагретом состоянии (термоосадкой).
Боковой электрод -массы» прямоугольного сечения приваривают к торцу корпуса и изгибают в сторону центрального. На цоколь корпуса с упором в плоскую опорную поверхность устанавливают уплотнительное кольцо, предназначенное для герметизации соединения свеча — двигатель.
На резьбовую часть контактного стержня устанавливают контактную гайку, если это требуется конструкцией наконечника высоковольтного провода. В некоторых свечах контактный стержень не имеет резьбовой головки, она сразу же штампуется в форме контактной гайки.
ИЗОЛЯТОР
Для обеспечения бесперебойности искрообразования изолятор должен обладать необходимой электрической прочностью даже при высокой рабочей температуре. Напряжение, прикладываемое к изолятору в процессе работы двигателя, равно напряжению пробоя искрового зазора. Это напряжение возрастает с увеличением давления и величины зазора и уменьшается по мере возрастания температуры. На двигателях с классической системой зажигания используются свечи с искровым зазором 0.5-0,7 мм. Максимальная величина напряжения пробоя в этих условиях не превышает 12-15 кВ (амплитудное значение). На двигателях с электронными системами зажигания установочный искровой зазор составляет 0,8-1,0 мм. В процессе эксплуатации он может увеличиться до 1,3-1,5 мм (у обеих систем). При этом напряжение пробоя может достигать 20-25 кВ.
Конструкция изолятора относительно проста — это цилиндр с осевым отверстием для установки центрального электрода.
в средней части изолятора имеется утолщение, так называемый -поясок- для соединения с корпусом. Ниже пояска расположена более тонкая цилиндрическая часть — -дульце-, переходящая в тепловой конус. В месте перехода от дульца к тепловому конусу расположена коническая поверхность, предназначенная для установки между изолятором и корпусом герметизирующей теплоотводящей шайбы. Выше пояска расположена -головка’, а в месте перехода от пояска к головке расположено плечико под завальцовку буртика корпуса при сборке свечи.
Допустимая, с учетом коэффициента запаса прочности, толщина стенок определяется электрической прочностью материала изолятора. По отечественным стандартам изолятор должен выдерживать испытательное напряжение от 18 до 22 кВ (действующее значение), что больше амплитудного в 1.4 раза Длина головки изолятора определяется напряжением поверхностного перекрытия и выполняется в пределах от 15 до 35 мм. У большинства автомобильных свечей эта величина около 25 мм. Дальнейшее увеличение малоэффективно и приводит к снижению механической прочности изолятора. Для исключения возможности электрического пробоя по поверхности изолятора его головку снабжают кольцевыми канавками (барьерами тока) и покрывают специальной глазурью для защиты от возможного загрязнения.
Функцию защиты от поверхностного перекрытия со стороны камеры сгорания выполняет тепловой конус. Эта важнейшая часть изолятора при относительно небольших размерах выдерживает без перекрытия по поверхности указанное выше напряжение.
Первоначально в качестве материала изолятора применяли обычный фарфор. но такой изолятор плохо сопротивлялся тепловому воздействию и имел низкую механическую прочность.
С увеличением мощности двигателей потребовались изоляторы более надежные. чем фарфоровые. Продолжительное время применяли слюдяные изоляторы. Однако при использовании топлив с присадкой свинца слюда разрушалась. Изоляторы снова стали изготавливать керамическими, но не из фарфора, а из особо прочной технической керамики.
Наиболее распространенной и экономически целесообразной для производства изоляторов является технология изостатического прессования, когда из заранее подготовленных компонентов изготавливают гранулы необходимого состава и физических свойств. Из гранул при высоком давлении прессуют заготовки изоляторов, шлифуют до необходимых размеров с учетом усадки при обжиге, а затем однократно обжигают.
Современные изоляторы изготавливают из высокоглиноземистой конструкционной керамики на основе оксида алюминия. Такая керамика, содержащая около 95% оксида алюминия, способна выдержать температуру до 1600 ‘С и имеет высокую электрическую и механическую прочность.
Важнейшим преимуществом керамики из оксида алюминия является то, что она обладает высокой теплопроводностью. Это существенно улучшает тепловую характеристику свечи, так как через изолятор проходит основной поток тепла, поступающий в свечу через тепловой конус и центральный электрод (рис. 10).
КОРПУС
Металлический корпус предназначен для установки свечи в двигатель и обеспечивает герметичность соединения с изолятором. К его торцу приваривается боковой электрод, а в конструкциях с кольцевым искровым зазором корпус непосредственно выполняет функцию электрода «массы».
Корпус изготавливают штамповкой или точением из конструкционных малоуглеродистых сталей.
внутри корпуса имеется кольцевой выступ с конической поверхностью. на которую опирается изолятор. На цилиндрической части корпуса выполнена кольцевая проточка, так называемая термоосадочная канавка. В процессе сборки свечи верхний буртик корпуса завальцовывают на поясок изолятора. Затем его нагревают и осаживают на прессе, при этом термоосадочная канавка подвергается пластической деформации, и корпус плотно охватывает изолятор. В результате термоосадки корпус оказывается в напряженном состоянии, что обеспечивает герметичность свечи на весь срок службы.
Рис. 10. Тепловые потоки в изоляторе свечи
ЭЛЕКТРОДЫ
Как сказано выше, для улучшения эффективности воспламенения электроды свечи должны быть как можно более тонкими и длинными, а искровой зазор должен иметь максимально допустимую величину. С другой стороны, для обеспечения долговечности электроды должны быть достаточно массивными.
Поэтому, в зависимости от требований к мощности, топливной экономичности и токсичности двигателей, с одной стороны, и требований к долговечности свечи с другой стороны, к каждому типу двигателя разрабатывалась своя конструкция электродов.
Появление биметаллических электродов позволило в определенной степени решить эту проблему, так как такой электрод имеет достаточную теплопроводность. В отличие от обычного «монометаллического» он при работе на двигателе имеет меньшую температуру и соответственно больший ресурс. В тех случаях, когда требуется увеличить ресурс, применяют два электрода «массы- (рис.11). На свечах зарубежного производства с этой целью применяют три и даже четыре электрода. Отечественная промышленность выпускает свечи с таким количеством электродов только для авиационных и промышленных газовых двигателей. Следует отметить, что с увеличением числа электродов снижается стойкость к образованию нагара и затрудняется очистка от нагара.
К материалу электродов предъявляются следующие требования высокая коррозионная и эрозионная стойкость: жаростойкость и окалиностойкость: высокая теплопроводность; достаточная для штамповки пластичность. Стоимость материала не должна быть высокой Наибольшее распространение в отечественной промышленности для изготовления центральных электродов свечей зажигания получили жаростойкие сплавы: железо-хромтитан, никель-хром-железо и никельхром с различными легирующими добавками
Рис. 11. Свеча А26ДВ-1 с двумя боковыми электродами «массы- |
Боковой электрод «массы» должен обладать высокой жаростойкостью и стойкостью к коррозии. Он должен обладать хорошей свариваемостью с обычной конструкционной сталью, из которой изготавливают корпус, поэтому применяют сплав никель — марганец (например. НМц-5). Боковой электрод должен обладать хорошей пластичностью для обеспечения возможности регулирования искрового зазора.
С целью снижения гасящего влияния электродов при доработке свечей на электродах выполняют канавки, в электроде -массы» выполняют сквозные отверстия. Иногда боковой электрод разделяют на две части, превращая одноэлектродную свечу в двухэлектродную.
ВСТРОЕННЫЙ РЕЗИСТОР
Искровой разряд является источником электромагнитных помех, в том числе радиоприему. Для их подавления между центральным электродом и контактной головкой устанавливают резистор, имеющий при температуре 25±10 ‘С электрическое сопротивление от 4 до 13к0м. В процессе эксплуатации допускается изменение величины этого сопротивления в диапазоне 2-50 кОм после воздействия температуры от -40 до +300 ‘С и импульсов высокого напряжения.
ДОПОЛНИТЕЛЬНЫЙ ИЗОЛЯТОР
Даже небольшие потери энергии зажигания приводят к ослаблению искры со всеми неприятными последствиями: ухудшение пуска, неустойчивая работа на холостом ходу, потеря мощности двигателя, перерасход топлива, рост токсичности отработавших газов и т. д. Если поверхность изолятора покрыта нагаром, грязью или просто влагой, происходит утечка тока «на массу». Она обнаруживается в темноте в виде коронного разряда по поверхности изолятора. Утечка по загрязненной поверхности теплового конуса изолятора в камере сгорания двигателя может привести к отказу в искрообразовании. Наиболее радикальным способом повышения электрической прочности изоляции является установка между корпусом и контактной головкой свечи дополнительного изолятора в виде керамической втулки. Таким образом, свеча приобретает двойную защиту от утечек тока «на массу».
Данное техническое рошенио защищено патентом и реализовано у нас в стране ЗАО «Автоконинвест» (Москва).
ФОРКАМЕРНЫЕ СВЕЧИ
Рис. 12. Форкамерная свеча зажигания
Известны различные варианты устройства свечи, у которых рабочая камера выполнена в виде форкамеры. Их используют с целью улучшения сгорания рабочей смеси. Форкамерные свечи подобны свечам для спортивных форсированных двигателей, где электроды для защиты от перегрева установлены глубоко внутри рабочей камеры корпуса. Отличие заключается в том. что отверстие. соединяющее рабочую камеру (форкамеру) с цилиндром двигателя, делают специальной формы. При сжатии свежая смесь поступает в форкамеру, искровой разряд возникает в области вихревого потока, и образование первичного очага воспламенения становится интенсивнее. Благодаря этому обеспечивается быстрое распространение пламени в форкамере. Давление быстро возрастает и выбрасывает факел пламени, проникающий в камеру сгорания двигателя и интенсифицирующий воспламенение даже сильно обедненной рабочей смеси.
При перетекании горящих газов из форкамеры в цилиндр двигателя, в связи с турбулизацией горючей смеси, ускоряется и становится более эффективным процесс сгорания. Это. в свою очередь, может привести к улучшению показателей, характеризующих топливную экономичность и токсичность отработавших газов.
Недостатки форкамерных свечей заключаются в том, что велико гасящее влияние электродов, а стойкость к образованию нагара мала. Вентиляция форкамеры затруднена и горючая смесь в ней содержит повышенное количество остаточных газов. При перетекании горящих газов из форкамеры в цилиндр возникают дополнительные тепловые потери. Один из вариантов форкамерной свечи представлен на рис. 12.
Все, что вы хотите знать о свечах зажигания — VDL Fuel Systems
1991 КОНФЕРЕНЦИЯ ТЕХНОЛОГИИ SUPERFLOW ENGINE
НАПИСАН: Дэном Вандерли / инженером по автоспорту, Champion Spark Plug Co.
Цитата Марка Твена — «Гром впечатляет, а гром — великолепен, но именно молния
делает работу».
Определение — Устройство, обеспечивающее зазор в камере сгорания двигателя внутреннего сгорания, через который может возникнуть электрический разряд, инициирующий сгорание топливовоздушной смеси.Свеча зажигания выполняет простую функцию в сложной среде. СВЕЧА ПРИ БОЛЬШОМ ВЕТРЕ Как и в названии, на свечу влияют характеристики ветра, поэтому при выборе свечей мы должны учитывать не только ее основную функцию, но, что более важно, «ветер», в котором она работает.
1. ДЕТАЛИ И СБОРКА
Базовое понимание деталей и сборки позже поможет в применении и интерпретации заглушки. (Съемная заглушка внизу)
ЧАСТИ
А.Изолятор — керамический оксид алюминия, должен обладать хорошей диэлектрической и механической прочностью, хорошей теплопроводностью и устойчивостью к тепловому удару
B. Центральный провод — должен иметь хорошую проводимость и быть устойчивым к химической и электрической эрозии (приблизительная температура плавления стандартного никеля составляет 2500 градусов по Фаренгейту)
C. Клеммная шпилька — либо цельная, либо съемная клеммная гайка из низкоуглеродистой стали
D. Кожух — низкоуглеродистая сталь, полученная прессованием или прутковой обработкой
E. Провод заземления — обычно изготавливается из того же материала, что и центральный провод
.Ф.Материал шайб (внутренних) — Медь и сталь
СБОРКА
A. Изолятор — отлит в сухом виде под высоким давлением, затем обожжен в печи для остекловывания при темп. выше температуры плавления стали
B. Центральная проволока — две части, сваренные вместе, нижний стандарт. хром-никель, верхний чугун (для прочности в процессе герметизации). Центральная проволока опускается в изолятор, а затем набивается порошком порожка путем утрамбовки
C. Клеммная шпилька — на клеммную шпильку нанесен цемент, затем навинчивается и затягивается с определенным крутящим моментом, после чего дают высохнуть или запекаться, обеспечивая газонепроницаемое уплотнение.
Д.Оболочка — после механической обработки или экструзии резьба накатывается, затем наваривается заземляющий провод, и устройство покрывается цинком или никелем
F. Материал шайбы — гоночные заглушки затем получают шайбы, а изолятор помещается внутрь корпуса, порог добавляется с утрамбовкой, если корпус подвергается холодному прессованию или если он должен быть заперт в горячем состоянии, порог не добавляется (типы c запираются горячим способом. ; s и v типа холодного отжима) наконец заземляющий провод обрезается и устанавливается зазор
*** ПРИМЕЧАНИЕ. Несмотря на то, что все наши гоночные вилки имеют положительный контакт между центральным проводом и шпилькой клеммы (из-за небольшого углубления на шпильке клеммы), не все разъемы будут обеспечивать целостность цепи при проверке с помощью омметра.Это не проблема, поскольку прибл. Зазор 0,002 дюйма, который не может перекрыть омметр низкого напряжения (примерно 1,5 В), фактически не вызывает сопротивления минимум 5000 В системы зажигания. Некоторые свечи действительно имеют встроенный зазор для борьбы со слабым зажиганием / засорением.
2. Рейтинг и тестирование
A. Рейтинг
Рейтинг обозначается как «тепловой диапазон»
Диапазон нагрева — это тепловые характеристики свечи или ее способность передавать тепло сгорания от запального конца к головке блока цилиндров.
Большая часть тепла рассеивается через резьбовую и посадочную часть корпуса
Тепло передается вниз по носовой части изолятора к посадочной или контактной точке изолятора и кожуха, а затем от кожуха к головке блока цилиндров.
Более длинный носик изолятора = более высокая температура свечи.
Наконечник изолятора — это самая горячая часть свечи и, следовательно, та часть, которая может вызвать преждевременное воспламенение. Для типичного 4-тактного двигателя это происходит при ок. 1750 градусов по Фаренгейту
Оценка теплового диапазона свечи или ее предвоспламеняемость определяется тестом IMEP.
Б. Тестирование
1. ТЕСТ IMEP — стандартный тест SAE № J551, одноцилиндровый, постоянный комп. передаточное число, постоянное опережение зажигания и полный газ
РейтингIMEP определяется настройкой мощности чуть ниже (1 ″ баро) точки, в которой свеча достигает предварительного зажигания, определяемого температурой. чувствительный индикатор. Наблюдается резкое повышение температуры цилиндра. в течение первых нескольких циклов в условиях предварительного зажигания / детонации. Более высокие значения IMEP (psi) = более холодный штекер.Номера IMEP хороши только для сравнения способности свечей рассеивать тепло, но не подходят для выбора свечей на основе IMEP или BMEP реального двигателя. Несмотря на то, что испытание SAE IMEP на самом деле является испытанием под нагрузкой, конструкция испытательного двигателя настолько отличается, что потери на трение добавляются обратно в уравнение, что делает окончательную цифру бесполезной для реальных сравнений IMEP или BMEP гоночного двигателя.
отл. BMEP = 150,8 X крутящий момент / куб. Дюйм
для двигателя V-8 310 CI с мощностью 420 футо-фунтов.крутящего момента
BMEP = 150,8 X 420/310 = 204,3 фунтов на кв. Дюйм
Рейтинг IMEP для C57C = 450+
C63C = 370
RV15YC = 200
2. ТЕСТИРОВАНИЕ ТЕРМОПАР — используется для определения базовой температуры. кривая для определения наиболее эффективной заглушки.
отл. температура простоя — для определения противообрастающих потребностей
WOT temps — для определения максимальной температуры
Любые изменения в конструкции двигателя, т. Е. Типа головки блока цилиндров, распредвала, фаз газораспределения, комп. соотношение, изменит темп.цилиндра и, следовательно, может быть проведено тестирование.
Термопары производятся со всеми распространенными размерами резьбы и диапазонами нагрева
Штекер термопары имеет небольшой термочувствительный элемент (сплав платины и платины / 10% родия) на конце наконечника изолятора, имеющий темп. чувствительный, напряжение на переходе увеличивается как темп. увеличивается и может быть скоррелирован, чтобы показать точную температуру. вилки на T.C. должность.
3. АНАЛИЗАТОР ПЛАМЕНИ или ИСПЫТАНИЕ ПРЕДВАРИТЕЛЬНОГО ЗАЖИГАНИЯ — в основном источник питания, подающий постоянное напряжение 10 В на свечу зажигания с осциллографом, показывающим кривую напряжения, показываемую током, протекающим через ионизацию зазора свечи.
По этой кривой мы можем определить:
1. коэффициент сжигания топливной смеси
2. Самовоспламенение — это определяется периодическим снятием электрического заряда с системы зажигания на свечу зажигания и наблюдением за воспламенением топлива в какой-то момент после заданного времени зажигания.
3. Предварительное зажигание — когда самовоспламенение переходит на ранее установленное значение угла опережения зажигания. Этот тест показывает, насколько близка свеча к предварительному зажиганию, что позволяет выбрать максимально горячую свечу.
4. Загрязнение свечи — базовый ток увеличивается по мере того, как свеча становится более загрязненной.
4. ИСПЫТАНИЕ НА ЭРОЗИЮ ЭЛЕКТРОДОВ или ИСПЫТАНИЕ НА ВЫНОСЛИВОСТЬ — электроды подвергаются воздействию высококоррозионной среды внутри камеры сгорания, то есть различных видов топлива, смазочных материалов, температуры цилиндров, тока зажигания и т. Д., Чтобы разработать продукт, который будет служить
3. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ХАРАКТЕРИСТИКИ ВИЛКИ
1. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ТЕМП. РАЗЪЁМА
Частота вращения двигателя и нагрузка — по мере увеличения числа оборотов и нагрузки на двигатель темп.штекера увеличивается
Время зажигания — большое влияние на температуру свечи, даже после падения кривой мощности, увеличение времени зажигания при работе двигателя под нагрузкой приведет к более высокой температуре свечи.
Увеличение мощности / крутящего момента — большинство изменений, которые увеличивают мощность, приводят к увеличению температуры штекера. (например, увеличивающийся комп.)
Температура головки цилиндра. — температура наконечника изолятора. практически напрямую зависит от температуры головки блока цилиндров. При замене головок цилиндров следует учитывать охлаждающую способность вокруг свечи зажигания.Некоторые головки более поздней конструкции не имеют водяной рубашки вокруг отверстия для пробки.
Обозначение — вызывает резкое и быстрое повышение температуры свечи. что может привести к преждевременному зажиганию и повреждению свечи.
2. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ТРЕБУЕМОЕ НАПРЯЖЕНИЕМ РАЗЪЁМА
Интервал зазора — с увеличением зазора возрастает «пусковое» напряжение, но напряжение «блокировки» остается относительно неизменным независимо от зазора. Бывший. Люминесцентный свет — лампа длиной 1 дюйм или лампа длиной 6 футов использует очень похожее количество напряжения для ионизации газов, но для более крупной лампы требуется значительно большее напряжение (балласт / трансмиссия), чтобы инициировать ионизацию.
Температура электрода. — как изолятор темп. и электрод уменьшается, напряжение, необходимое для создания искры, увеличивается. Это не так важно при более высоких оборотах, когда температура свечи. относительно высока независимо от диапазона нагрева свечей, но это может быть критичным в ситуации с холодной свечой / низкой частотой вращения, когда слабая искра может способствовать засорению. Примечание * гоночные двигатели с меньшей мощностью требуют такого же зажигания, как и их собратья с более высокой мощностью, потому что, хотя воспламенение смеси может быть легче из-за более низкой компрессии, это затруднено из-за более низкой температуры цилиндра.и тоже хорошее качество топлива.
Топливо — проводимость топлива влияет на требования к напряжению, так как очень проводящее топливо может, когда оно смачивает свечу зажигания, сбрасывает часть электрического заряда. Хорошим примером является метанол, который является очень проводящим и требует очень сильной системы зажигания.
3. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ЭФФЕКТИВНОСТЬ РАЗЪЁМА
Расположение вилки — наиболее важный фактор, касающийся вилки рядом с нагревательной плитой. Первые 10% пламени сильно влияют на остальные 90%, т.е.е. если пламя горит очень медленно, оставшаяся расческа. процесс будет происходить с медленной скоростью, поэтому способ возникновения фронта пламени очень важен для работы двигателя. С учетом вышесказанного очевидно, что пробка должна быть открыта, чтобы способствовать большему начальному ядру пламени.
Некоторые теории о местонахождении штекера:
1. Заглушка должна располагаться по центру камеры сгорания, чтобы пламя могло распространяться во всех направлениях, что приводило к более высокой скорости горения.Минимальная длина пути пламени = более высокая скорость горения = более быстрое давление. рост = меньше денотационных тенденций
2. Заглушка должна быть расположена рядом с выпускным клапаном — наличие горячего выпускного клапана, расположенного рядом с выходными газами, способствует получению обозначения, поэтому размещение заглушки рядом с выпускным клапаном помещает отходящие газы в более прохладную среду, что приводит к уменьшению обозначения, эта заглушка расположение также способствует быстрому сгоранию, потому что тепло от выпускного клапана способствует скорости горения 10%, что приводит к меньшему моменту зажигания, необходимому при более быстром повышении давления.
3. Расположение заглушки относительно завихрения в камере сгорания — на этот счет есть две точки зрения:
A) Рассмотрим турбулентную смесь вихрей, если искра возникает в центре вихря (а), пламя должно распространяться без помощи турбулентности, пока не достигнет границы вихря, с другой стороны, воспламенение на границе вихря (b), будет немедленно способствовать распространению пламени из-за возникающего срезающего действия.
B) Пробка, расположенная на границе завихрения, может стать причиной мокрого засорения топливом (чаще всего при более низких оборотах) напр.колебания перезапуска, испытываемые спринтерскими автомобилями, работающими на метаноле
Несколько свечей зажигания — могут уменьшить циклические колебания 10% сжигания топлива при более низких оборотах, потому что есть лучшая возможность для точки воспламенения находиться в надлежащей топливно-воздушной смеси и вблизи края вихря для распространения пламени. Также используется в приложениях, где большое количество топлива затрудняет воспламенение смеси, в этом случае используются 2 свечи с 2 отдельными системами зажигания для создания достаточного количества тепла (плотности тока) для уменьшения пропусков зажигания.Может также уменьшить обозначение из-за уменьшения времени горения, при условии, что искра задерживается достаточно, чтобы поддерживать пиковое давление на оптимальном значении. Отрицательная сторона этого устройства состоит в том, что несколько фронтов пламени создают скудное место на стыке, что снижает мощность и потенциально может нанести вред двигателю. В идеальном двигателе расположение нескольких свечей не даст никаких преимуществ по сравнению с расположенной в центре одиночной свечой, но идеального двигателя не существует.
4. ТИПЫ РАЗЪЕМОВ — ФАКТЫ И ФИКТЫ
Резистор / подавитель — его функция заключается в управлении электромагнитными помехами.В гоночном двигателе с зажиганием от емкостного разряда это немного снижает энергию, передаваемую в зазоре свечи. Возможным преимуществом может быть то, что при таком большом количестве электроники, используемой в сегодняшних гонках (системы управления двигателем, системы сбора данных и т. Д.), Уменьшение электромагнитных помех может быть очень важным. Однако при воспламенении высокой мощности резистор может сгореть.
Стили зазоров :
1. Стандартный зазор или J-образный зазор — количество мест свечей зажигания прибл.1/16 ″ в камере сгорания. Может использоваться с заземляющим проводом в конфигурации «Полное покрытие», «Половинное покрытие» или «Угловой зазор». Меньшее покрытие зазора между проводами способствует лучшему воздействию искры, поскольку дуга не проходит за большой частью провода заземления. Дуга имеет тенденцию возникать в точке наименьшего сопротивления, которая обычно является кратчайшим расстоянием между точками. Обычно это на обратной стороне центрального провода из-за того, что заземляющий провод идет вниз по направлению к корпусу. Также в штепсельных вилках диапазона холодного нагрева провод заземления становится самой горячей точкой в камере сгорания и, таким образом, фактором ограничения теплового диапазона, поэтому укорочение провода заземления может добавить немного страховки за счет уменьшения этой горячей точки.
2. Спроецированный носик керна — помещает искру на дополнительные 1/8 дюйма в камеру сгорания. Первоначально разработан для предотвращения засорения за счет воздействия на изолятор / центральный провод воздушного топливного тракта и тепла цилиндра. В уличных условиях он работает как более горячая свеча при более низких оборотах, в то время как охладитель работает на более высоких оборотах. Это связано с охлаждающим эффектом топливного заряда на выступающем наконечнике. В гонках он делает то же самое, однако у него есть ограничения, потому что длина носа сердечника и длинный заземляющий провод ограничивают возможность создания более холодных диапазонов нагрева в этой конфигурации.Если бы эту вилку можно было построить в более холодном диапазоне температур, она была бы идеальной для использования на суперскоростных трассах, но, поскольку она используется, обычно ограничивается короткими трассами, некоторыми дорожными трассами, а иногда и квалификацией на больших трассах. Поскольку он физически перемещает точку воспламенения, он может располагать точку воспламенения по центру, что сокращает время горения. Он также может разместить точку воспламенения в более эффективном месте на основе завихрения. В некоторых случаях эта свеча имеет тот же эффект, что увеличивает угол опережения зажигания.
3. Втягиваемый зазор — разработан для двигателей с высокой выходной мощностью, когда свечи не могут быть установлены достаточно холодными с помощью заземляющих проводов обычного типа. Для использования в двигателях типа F-1 и Indy с очень высокими значениями давления и температуры в цилиндрах. и проблемы с зазором заземляющего провода. Некоторые из этих вилок имеют серебряные центральные провода, которые помогают отводить тепло. Свечи этого типа следует использовать только в случае крайней необходимости, так как они обеспечивают наименьший стимул к возгоранию из всех свечей.
4. Поверхностный зазор — изначально разработан для подвесных 2-тактных двигателей, у которых была серьезная проблема загрязнения из-за грязного топлива, вызывающего большие отложения на изоляторе, которые, в свою очередь, вызывали преждевременное зажигание / обозначение.Эти свечи настолько холодные, что у них нет измеримого диапазона нагрева, они также требуют высокоэнергетической системы зажигания компакт-дисков. Недавно мы добавили заглушку с «поверхностным воздушным зазором», у которой есть некоторая длина выступа изолятора, что обеспечивает измеримый диапазон нагрева. Эти свечи очень популярны в современных двигателях F-1. С тонкой центральной проволокой. (0,052 ″) и несколько оголенный нос сердечника, эта свеча очень хорошо работает с воспламенением высокой энергии.
5. U-Groove Заземляющий провод — Единственное возможное преимущество этой свечи — это более открытая искра из-за того, что нет центра заземляющего провода, к которому можно было бы возгорать.То же самое можно сделать с помощью тонкого заземляющего провода / углового зазора. Нельсон Крозье поговорил с одним из инженеров из Ниппенденцо, который участвовал в разработке этой вилки, и он сообщил, что причиной U-образного заземляющего провода было устранение проблемы деформации корпуса, с которой они столкнулись при сварке полноразмерного заземления. провода на снарядах. (большая проволока нагревается при сварке)
6. Split-fire / Ring-of-fire — опять же, единственными возможными преимуществами были бы (1) лучшее искровое воздействие за счет разделения заземляющего провода вокруг центрального провода, однако в этом случае заземляющий провод фактически имеет большую массу, поэтому Можно утверждать, что центральная проволока на самом деле более закрыта и (2) у нее более острые края для более длительного срока службы, но эта дополнительная область также может быть более горячими точками в гоночных условиях, что приводит к преждевременному воспламенению.Что касается заявления о большей энергии искры, то пока вы сравниваете «яблоки с яблоками», эти свечи не отличаются от любой другой стандартной свечи с зазором. Там, где могла бы быть разница, если бы мы сравнили, скажем, резистор с нерезистором или вспомогательную заглушку со стандартной вилкой. Что касается заявления о множественных искрах, естественный акт молнии является лучшим примером «один заряд / одна дуга», проще говоря, если свеча получает один заряд, она генерирует одну дугу. Есть несколько небольших повторных возгораний из-за небольшого количества энергии, оставшейся в катушке, но они не имеют значения для работы свечей.
7. Тонкий центральный провод / заземляющий провод — , изначально разработанный для улучшения пусковых характеристик и противообрастающих характеристик в небольших 2-тактных двигателях. Небольшой центральный электрод снижает напряжение, необходимое для зажигания зазора. Заземление и центральный провод с меньшей площадью поперечного сечения также могут обеспечить более стабильное зажигание, что приведет к меньшим колебаниям цикла. Еще одно преимущество состоит в том, что меньший диаметр (0,052 дюйма по сравнению с 0,100 дюйма) центрального провода позволяет уменьшить диаметр изолятора, что увеличивает зазор в отверстии, что приводит к тому, что больший объем топлива попадает в заглушку и выходит из нее, что помогает удерживать он чистый, противостоит обрастанию и лучше контактирует с топливом, улучшая воспламеняемость.Эти свечи были протестированы и доказали, что они могут работать при более высоком давлении, чем стандартные. диам. центральные проволочные свечи с аналогичными системами зажигания.
8. Bullet Nose или увеличенный зазор между поверхностью и воздухом — с недавней проблемой отказа провода заземления это может быть решением в тех случаях, когда обычный провод заземления не работает.
Специальные материалы для центрального провода / заземляющего провода — центральный провод с медным сердечником и серебряный центральный провод в первую очередь предназначены для отвода тепла от запального конца свечи, однако все другие конструкции из драгоценных металлов в основном используются из-за их коэффициента прочности.Следует также отметить, что центральные проволоки из драгоценных металлов способствуют улетучиванию искры из-за наличия в них свободных электронов. В уличном применении эти свечи великолепны, поскольку иногда их не нужно менять на протяжении всего срока службы вашего автомобиля, но для гонок они не имеют большого применения, если только кто-то не придумал зажигание или топливо, которое является особенно эрозионным / коррозионным. Есть одна вещь, которая представляет некоторый интерес, а именно то, что платина является катализатором для спирта (в частности, метанола и этанола), и с поиском альтернативных видов топлива и бустеров октанового числа, причем спирт является одним из ведущих кандидатов, а сильные настаивают на том, чтобы свечи были долговечными, а платина, являющаяся одним из популярных вариантов, представляет собой реальную потенциальную проблему.С учетом всего вышесказанного вам ни в коем случае нельзя запускать платиновую пробку в своем гоночном автомобиле, работающем на алкогольном топливе.
Заглушки разных размеров (10 мм, 12 мм, 14 мм) — по мере того, как заглушки перемещаются больше, увеличивается использование заглушек меньшего диаметра из-за физических ограничений головки блока цилиндров, с увеличением использования увеличилось количество жалоб на отказы оболочки, т. е. на поломку оболочки у основания нитей. Эти отказы происходят не из-за плохого производства, а из-за отсутствия знаний об их характеристиках крутящего момента.
Средний номинальный крутящий момент: 14 мм — 28 фунт-фут. — 12 мм — 15 фунт-фут — 10 мм — 10 фунт-фут
Площадь поперечного сечения гильзы диаметром 10 мм почти на 50% меньше, чем у гильзы диаметром 14 мм. Производители штекеров годами проповедовали ребятам из F-1 об использовании динамометрического ключа при установке этих 10-миллиметровых штекеров, вы просто не можете полагаться на «чувство». Корпус заглушки диаметром 10 мм имеет площадь поперечного сечения, сопоставимую с болтом 1/4 дюйма. Поэтому в следующий раз, когда вы установите 10-миллиметровую вилку, подумайте о ней как о болте из мягкой стали 1/4 дюйма.Причина, по которой оболочки нельзя сделать толще, заключается в том, что это приведет к уменьшению размера изолятора, а электрическая прочность не будет достаточной для предотвращения образования дырок в изоляторе. Таким образом, это компромисс между прочностью оболочки и диэлектрической прочностью изолятора.
Коническое седло по сравнению с седлом с прокладкой — с некоторыми новыми головками блока цилиндров коническое седло и седло с прокладкой обрабатываются на станке, что позволяет пользователю сделать выбор. Первоначально коническая конструкция седла создавалась только потому, что в некоторых случаях физические размеры прокладки и шестигранника 13/16 ″ были неприемлемы, однако теперь с новой конструкцией заглушки с шестигранной головкой 5/8 ″ проблема не так серьезна Пробка сиденья с прокладками снова становится популярной.По рассадке разницы быть не должно. Типичные аргументы в пользу этих заглушек таковы: алюминиевые головки перемещаются, как они, из-за теплового расширения и сжатия может возникнуть проблема утечки из конического седла — из-за заглушки с уплотнением прокладки могут иметь проблемы с надлежащим сдавливанием. Ни один из этих аргументов не выдерживает критики, поскольку практически не было проблем с установкой каждой заглушки. Единственное возможное преимущество одного перед другим может заключаться в том, что коническая плунжер седла распределяет свою нагрузку по осям X и Y, тогда как седло с прокладкой нагружается только в одном направлении, тем самым прикладывая большую силу непосредственно к резьбе плунжера и цилиндра. глава.
5. ИНТЕРПРЕТАЦИЯ ПРОБКИ
Почему — поскольку заглушка — это ближайшая вещь, которую мы должны искать в цилиндре и помимо очень дорогого оборудования для сбора данных (которое не всегда практично, законно или даже доступно), это лучший индикатор того, что происходит в процессе горения.
Как — очень важно — со светом нужного увеличения и яркости. Это кажется таким простым, но многие люди неправильно понимают вилку, потому что свет слишком темный, что мешает им видеть вилку такой, какая она есть на самом деле, и заставляет их «читать» тени.Также важно найти хорошее увеличение и придерживаться его. (Я предпочитаю увеличение, которое позволяет мне видеть детали, такие как обозначения и масляные пятна, и по-прежнему позволяет мне видеть весь огневой конец.) Изменения в увеличении сильно меняют «внешний вид» свечи, и, если вы не знакомы с этим, это только запутает вас.
Условия испытаний :
1. Должна быть новая свеча — некоторые маркировки, такие как обозначения и смазка, не выгорят, поэтому становится трудно увидеть изменения, когда свеча загромождена старой информацией.
2. Требуется хорошее, чистое отключение питания — это не значит, что при полностью открытой дроссельной заслонке и 300 милях в час щелкает выключателем зажигания! Это не повредит показаниям свечей, когда вы нажимаете на сцепление, откручивая дроссельную заслонку, дайте двигателю на мгновение стабилизироваться, а затем выключите зажигание. Важно проводить эту проверку при самой высокой температуре, то есть в конце самого длинного пробега, и не позволять ему простаивать весь путь до ям.
3. Будьте последовательны — двигатель должен быть до рабочей температуры., (вода и масло), и быть одинаковыми от теста к тесту. Продолжительность теста также должна быть каждый раз одинаковой. Все, что влияет на двигатель, повлияет на показания свечи (число оборотов, температура и давление воздуха на входе, температура охлаждающей жидкости и т. Д.), Поэтому при чтении свечей помните обо всех изменениях.
На что обратить внимание:
1. Топливно-воздушная смесь или топливное кольцо — поищите цвет кольца на изоляторе. По мере того, как двигатель становится богаче, цветное кольцо становится темнее и выше в носовой части изолятора (по направлению к заземляющему проводу), по мере того, как смесь становится беднее, топливное кольцо становится более светло-коричневым и приближается к нижней части изолятора иногда полностью исчезает.В гоночных свечах Champion керамическое покрытие нанесено на изолятор в месте его установки в кожух. Как мы уже заявляли, когда вы настраиваете наклон двигателя и топливное кольцо опускается глубже в изолятор, и, наконец, оно полностью исчезает, следующим шагом будет только что упомянутое керамическое покрытие, вздутие и натягивание изолятора, так что вы увидите тонкий слой. , черное кольцо с зазубринами прямо на дне изолятора, прежде чем он войдет в оболочку.
2. Время зажигания — обычно обозначает появление крошечных металлических шариков на изоляторе.Эти точки могут быть темными или серебристыми (что указывает на алюминий), но всегда имеют сферическую форму.
3. Heat — это очень важное значение, потому что оно является результатом трех факторов. 1-топливный 2-х ГРМ 3-диапазон накаливания свечи. Избыточный нагрев можно определить по глянцевому изолятору и / или обесцвечиванию заземляющего провода и центрального провода. Другими показателями количества тепла в вилке являются расположение линии цвета тепла на резьбе корпуса и заземляющем проводе.В жару идет вверх. цветная линия продлится до большего количества нитей на корпусе и продвинется дальше по заземляющему проводу к корпусу. Лично для меня резьба немного трудна для чтения, однако линия нагрева провода заземления хорошо видна и, следовательно, легко увидеть изменения в ней. Как только вы видите тепло в вилке, чтобы понять, какой из трех факторов вызывает это, необходимо знать рабочие характеристики двигателя и место считывания свечей, когда двигатель находится на динамометрическом стенде (где у вас есть преимущество в виде показаний мощности), становятся настолько важными.Например, если свеча сильно нагревается в точке наилучшей мощности для синхронизации и топливной смеси, тогда вам следует попробовать свечу с более холодным диапазоном нагрева. Если вы уверены в диапазоне нагрева свечи, а на гусенице свеча показывает тепло, подумайте о топливе и времени. Все это требует обширных базовых знаний о вашем конкретном двигателе, и очень сложно в первый раз взглянуть на набор свечей и дать совет «лучшая мощность». Еще одна проблема, которую следует учитывать, заключается в том, что разные свечи по-разному показывают тепло, и вы должны знать об этих производственных различиях, пытаясь их прочитать.Хороший пример — у старых свечей Champion был цемент между центральным проводом и изолятором, многие люди искали, чтобы этот цемент выкипел сверху как индикатор тепла. Это сработало отлично, но теперь мы удалили цемент, что может стать большой проблемой, если вы будете продолжать наклоняться и ждать, пока цемент выкипит. Это изменение также приводит к тому, что вилка немного нагревается, что приводит к тому, что цветовая линия изолятора выглядит более тонкой. Еще одним отличием может стать обшивка корпуса и заземляющего провода.Хроматы цинка обесцвечиваются быстрее, чем никелевые покрытия, что опять же может изменить ваше впечатление. Лучший совет — оставаться последовательными или понимать изменения, чтобы они вас не обманули.
4. Аналогичные условия для всех свечей — для оптимальной работы все свечи должны выглядеть одинаково, что означает, что все цилиндры работают одинаково и с максимальной эффективностью. Вы должны смотреть на все свечи при настройке двигателя, чтобы убедиться, что вы видите наихудший случай, но в то же время с каждой свечой следует обращаться так, как если бы она была от одноцилиндрового двигателя.Если свечи различаются по показаниям, это может быть связано либо с непостоянным охлаждением, либо с неправильным распределением топлива. Проблемы с распределением топлива иногда могут быть решены с помощью ступенчатого впрыскивания (в карбюраторных двигателях это обычно влияет на два цилиндра на жиклер) или путем установки отверстий в коллекторе. Не следует игнорировать изменяющиеся условия пробки, поскольку они могут быть первым индикатором проблемы, игнорирование которой может перерасти в более серьезное состояние. Некоторые люди, пытаясь сделать все свечи похожими друг на друга, изменили диапазон нагрева свечей в двигателе.Хотя это может быть уместным сказать: предотвратить появление обозначений в горячем цилиндре, установив более холодную пробку, оставив другие холодные цилиндры с более теплыми пробками, это следует использовать только в качестве профилактической меры и не путать с фактическим устранением причины или повышение производительности этого цилиндра.
5. Сила зажигания — Показателем силы зажигания является «искровое пятно» на центральном проводе. При использовании сильного зажигания на центральном проводе будет виден серповидный знак от силы дуги.Иногда свечи, помимо потери этой отметки, приобретают очень холодный, насыщенный вид, когда вы чувствуете, что впрыскивание и синхронизация подходят, а проверка герметичности цилиндра оказывается в порядке. Это может быть из-за слабого зажигания и решено простой заменой деталей зажигания. Однако часто этот «слабый» вид возникает из-за плохой системы электрического заземления. Не полагайтесь на свои металлические опоры двигателя для заземления двигателя, хороший ремень от двигателя к раме решил многие проблемы с зажиганием. Идеальной системой заземления было бы проложить медный кабель размера 0 или -1 от отрицательной стороны батареи до стойки, приваренной к раме, а затем проложить все ваши заземляющие провода, включая заземляющую ленту, от двигателя к этой общей стойке .
Другие индикаторы проблем :
Масло — обычно темный блестящий вид, который не стирается на ладони. Иногда, когда кольца не сели полностью, вы видите маленькие плоские темные пятна. Эти пятна можно отличить от обозначения по разной форме. Иногда появляется большое единичное пятно, обычно это происходит из-за того, что масло стекает по направляющей при выключенном двигателе и попадает на свечу.
Вода в цилиндре — Первым признаком утечки воды в цилиндр является отсутствие топливного кольца в сочетании со светло-серым оттенком на всей запальной части.
Присадки в топливе — Иногда при смене марки топлива можно увидеть изменение внешнего вида изолятора. Обычно это изменение цвета, указывающее на использование в топливе другого красителя или добавки. Он может иметь желтый оттенок или иметь кристаллический вид. Желтый цвет обычно представляет собой кислую нефть с высоким содержанием серы (западная сырая нефть — это высокосернистая нефть с высоким содержанием серы), или это может быть связано с большим количеством присадки свинца. Что касается кристаллизованного внешнего вида, некоторые гусеницы добавляют в свое топливо небольшой процент спирта, чтобы поглотить воду / конденсат, который собирается в их больших, очень редко полных резервуарах для хранения.Этот спирт вместе с водой может придать изолятору кристаллический вид.
Резьбовые вставки в алюминиевые головки — В прошлом году мы столкнулись с интересной ситуацией. Гонщик сорвал резьбу в одном из отверстий для пробок на своих алюминиевых головках, поэтому он решил проблему с помощью стальной резьбовой вставки. В следующий раз, когда он запустил машину, пробка в этом отверстии расплавила наконечник. Произошло то, что теплоотвод головки и, следовательно, вилки, были изменены, что сделало этот диапазон нагрева слишком горячим.В этом случае стальная вставка, безусловно, имела эффект, но не менее важно было то, что Loctite использовался для ее удержания в определенных местах, поскольку связующее вещество создавало отличный тепловой барьер.
Выбор диапазона нагрева — в основном существует две теории выбора диапазона нагрева свечи для двигателя и соответствующей настройки.
1. Выберите как можно более горячую свечу — этот выбор использовался в течение многих лет и оправдывается мыслью, что вы устраняете любое загрязнение и спотыкание при низких оборотах, и что более горячая свеча вообще зажигает пламя быстрее. Число оборотов в минуту приводит к увеличению скорости горения.Сторонники этой идеи не возражают против охлаждения свечи за счет добавления большего количества топлива (обогащения двигателя) и уменьшения времени гонки. Большинство сторонников этой теории — драгрейсеры, для которых экономия топлива не так важна, и легкое обозначение можно уловить до того, как будет нанесен какой-либо ущерб.
2. Выбирайте как можно более холодную пробку — это довольно новая идея, но она набирает большую популярность среди гонщиков на овальных треках и шоссейных гонках. Подход здесь состоит в том, чтобы запустить холодную пробку в сочетании с обедненной смесью и иногда с увеличением времени.Этот выбор исключает возможность ограничения свечей соотношения воздух / топливо и момента зажигания, поскольку она становится точкой предварительного зажигания, тем самым позволяя тюнеру находить «лучшую мощность» в обоих этих случаях. В некоторых сообщениях говорится, что топливные смеси намного беднее и время, превышающее предполагаемое ранее, было успешно отработано. Это может быть преимуществом, когда экономия топлива является проблемой. Другие преимущества более холодной свечи заключаются в том, что она более чувствительна к изменениям настройки, так как не так много топлива сгорает из-за тепла изолятора, а также с увеличением степени сжатия и последующего давления в цилиндрах, более холодные свечи обеспечивают некоторую страховку от предварительного -Зажигание / обозначение и, вероятно, намного больше соответствуют надлежащему диапазону нагрева для температуры цилиндра.На мой взгляд, единственная проблема, связанная с этим подходом, может быть связана с ситуацией низких оборотов, когда может быть возможность пропусков зажигания. Однако большая часть гонок, проводимых сегодня, проходит на относительно высоких оборотах, и большинство гонщиков, вероятно, могли бы использовать более холодную вилку без вредных последствий и возможности некоторых преимуществ, просто убедитесь, что у вас достаточно зажигания.
Мысли о специальных применениях — большая часть наших разговоров была сосредоточена вокруг бензиновых двигателей без наддува. Ниже приведены некоторые мысли относительно других гоночных приложений.
1. Двигатели на спиртовом топливе — Спирт плохо читается на изоляторе свечи, так как он горит очень чисто. В основном вам нужно искать тепло, чтобы указать на ваше богатое / обедненное состояние. Если свеча выглядит новой, а зажигание исправно, значит, вы слишком богаты. Некоторые производители двигателей смотрят на верхнюю часть выпускных отверстий, чтобы проверить настройку топлива, светло-коричневый цвет указывает на хорошую топливно-воздушную смесь. Также имейте в виду, что двигатели, работающие на спирте, не так чувствительны к обогащению, как бензиновые двигатели (при 10% обогащении не будет потери мощности), поэтому не беспокойтесь о топливной смеси, как если бы вы были с бензином .Если он показывает изрядное количество тепла и двигатель хрустящий, вероятно, все в порядке.
2. Нитрометановые двигатели с наддувом — смотреть на эти свечи — все равно что смотреть в ствол пистолета, чтобы увидеть приближающуюся пулю — если вы видите это, уже слишком поздно! Вы должны искать тепло в центральном проводе: светло-голубой цвет является нормальным, а следующий шаг, более горячий, сжигается и исчезает. Что касается обозначения, если вы видите его в розетке, уже поздно. Лучше начать разбирать его, так как поршень, кольца и / или цилиндр наверняка будут повреждены.Выбирая свечу для этих двигателей, вы должны учитывать огромную скорость, с которой в этих цилиндрах накапливается тепло. Он может накапливаться настолько быстро, что центральный провод слишком быстро расширяется, вызывая растрескивание изолятора как в радиальном, так и в вертикальном направлении. По этой причине, если свечи будут использоваться снова после одного запуска, их следует проверить при помощи контрольной лампы. Некоторым настройщикам двигателей нравится использовать удлиненную пробку наконечника, чтобы топливная смесь не загрязняла пробку, а затем они считывают процент сгоревшего провода заземления как показатель богатого / обедненного состояния.
3. 2-тактные двигатели — в основном эти двигатели читаются очень похоже на 4-тактный двигатель в том, что касается изолятора и электродов. Оболочка всегда будет казаться более блестящей, что указывает на более высокую температуру цилиндра. связан с 2-тактными двигателями. Как и в случае с 4-тактным циклом, насыщенные условия затемняют цвета, тогда как постное белье будет иметь очень сильную отражающую способность и будет иметь глянцевый вид. Время также похоже на его внешний вид, но даже малейший признак обозначения разрушит поршень и цилиндр.Выбор диапазона нагрева свечи является очень важным фактором для двухтактного двигателя. Вам определенно понадобится достаточно горячая свеча, чтобы предотвратить загрязнение при низких оборотах, но если она слишком теплая, масло в топливной смеси может пригореть на изоляторе, который становится горячими точками, когда накапливается достаточно, создавая ситуацию предварительного воспламенения. Более холодные свечи из тонкой проволоки очень хорошо работают в этих двигателях из-за противообрастающих характеристик при низких оборотах, которые имеют конструкция из тонкой проволоки. Следует помнить, что все условия более критичны, поскольку 2-тактный двигатель срабатывает при каждом такте, что сокращает время охлаждения цилиндра и поршня.
ЗАКЛЮЧЕНИЕ
Как мы уже говорили в начале, свеча зажигания выполняет очень простую функцию, она воспламеняет топливную смесь, ни больше ни меньше. Это означает, что при правильных условиях все «уловки» плагина бессмысленны и учитывают все отчеты, в которых говорится: «Я пробовал это, но ничего не помогло». Однако, вероятно, нет ничего менее понятного, менее документированного и, безусловно, менее воспроизводимого, чем процесс горения и все факторы, которые на него влияют.Следовательно, поскольку свеча зажигания является инициирующим фактором в этом таинственном процессе сгорания, необходимо, чтобы мы понимали: 1. базовую конструкцию и материалы, чтобы мы могли сделать правильный выбор; 2. факторы, влияющие на характеристики свечей, чтобы мы могли наиболее эффективно используйте эту пробку 3. способности пробок, чтобы мы не ожидали, что она будет делать то, на что она не способна, и 4. мы должны понимать и уметь интерпретировать то, что говорит нам этот датчик, окно процесса горения. поскольку в отношении сгорания буквально не существует двух идентичных двигателей, существует очень мало жестких правил в отношении применения или интерпретации, и поэтому опыт является вашим самым большим преимуществом.Чем больше вы смотрите, тем больше вы понимаете и сможете более эффективно настраивать свой двигатель.
Основа новой свечи зажигания — высокоглиноземистый керамический изолятор
В свечах зажигания Sure Fire Plus используется изоляционный материал с высоким содержанием глинозема, который обеспечивает более высокое напряжение без электрического пробоя и подходит для более плотных упаковочных окон, используемых в современных бензиновых двигателях. (Источник: Федерал-Могул.)
Federal-Mogul Corp., поставщик автомобильных компонентов и систем из Саутфилда, штат Мичиган, представила новую высокоэффективную свечу зажигания с изолятором из высокоглиноземистого материала, который позволяет свече выдерживать увеличивающиеся термические и напряжение и другие требования современных бензиновых двигателей большой мощности.
Свечи зажигания SureFire Plus компании SureFire Plus обеспечивают более высокое напряжение, продлевают срок службы свечей и предназначены для эффективной установки в все более загруженные головки цилиндров двигателя, говорится в пресс-релизе.
Тенденции в современной технологии бензиновых двигателей включают необходимость поддерживать или повышать производительность при одновременном снижении выбросов CO 2 . Уменьшенные размеры двигателей с высокой степенью сжатия производят гораздо более высокие пиковые температуры и давления во время сгорания и используют более бедные топливовоздушные смеси и альтернативные виды топлива, которые труднее воспламенить.Все эти факторы увеличивают потребность в энергии и, следовательно, напряжение, необходимое на свече зажигания, в зависимости от расцепителя. В сочетании с уменьшением площади для свечей зажигания в головке блока цилиндров — результатом меньшего диаметра цилиндра, большего количества клапанов на цилиндр и технологии прямого впрыска топлива — эти изменения привели Federal-Mogul к разработке лучшего изоляционного материала, который позволил бы использовать высокое напряжение. зажигания и поместиться в меньшую упаковку.
Рич Келлер, директор по разработке продуктов зажигания, говорит, что новые свечи зажигания могут выдерживать напряжение 42 кВ и более по сравнению с 36 кВ для свечей предыдущего поколения.«Керамический изолятор — единственный барьер между электродами», — говорится в сообщении Келлера. «Это заставляет искру перепрыгивать через зазор, что инициирует возгорание. Беспрецедентный уровень керамических характеристик, достигнутый нами в свечах зажигания SureFire Plus, позволяет создать новое поколение систем зажигания, которые обеспечивают большую энергию и долговечность в меньшем корпусе ».
Келлер говорит, что изолятор меньшего размера также имеет большое значение. «Традиционно в свечах зажигания используется корпус с резьбой 14 мм», — поясняет он.«Сегодня большинство новых двигателей выпускаются с корпусами с резьбой 12 мм. В будущем мы планируем увеличить его размер до 10 мм ».
Согласно релизу, изоляторы свечей зажигания обычно производятся из материала, состоящего на 95 процентов из глинозема и на 5 процентов из стекла. Изолирующий материал новых свечей представляет собой почти чистый оксид алюминия с добавлением небольшого количества других оксидов, предназначенных для улучшения сопротивления шунтирования при высоких температурах и минимизации утечки электрического тока через керамику.
Келлер говорит, что усовершенствованный изоляционный материал потребовал изменений в методах обработки и оборудовании.«При производстве заглушек SureFire Plus мы перешли с давления уплотнения 8 500 фунтов на квадратный дюйм до 30 000 фунтов на квадратный дюйм», — объясняет он. «Мы также термически обрабатываем заготовки, чтобы не повредить их.
В настоящее время компания находится в экспериментальном производстве с новыми заглушками; крупносерийное производство планируется начать в мае 2014 года. Согласно сообщению, Federal-Mogul также ожидает неавтомобильных приложений для запатентованного материала, например, на рынке сжатого природного газа.
Краткая история минеральных изоляторов для свечей зажигания
Сегодня мы рассмотрим кое-что, о чем, как я знаю, вы все думали годами. Что ж, не удивительно, что просвещение по этой волнующей теме уже здесь!
ЗАЧЕМ ЗАНИМАТЬСЯ ИЗОЛЯТОРАМИ СВЕЧИ ЗАЖИГАНИЯ?
История технологий — это действительно круто. Надеюсь, вы получите от этого столько же заряда, сколько и я.
В 1902 году Готтлоб Хонольд и Роберт Бош создали первую настоящую систему зажигания от магнето с первыми высоковольтными свечами зажигания.Хотя с тех пор было сделано много улучшений, основные принципы зажигания газовых двигателей, разработанные Хонольдом и Бош, остались прежними.
Конструкция свечи зажигания
Начиная с 1902 года, общая конструкция высоковольтных свечей зажигания состоит из трех частей:
- Центральный электрод. Это проводящий материал, обычно металл, который переносит электрический заряд в камеру сгорания бензинового двигателя.
- Изолятор. Он оборачивается вокруг центрального электрода и изолирует его.
- Корпус или оболочка штекера. Это токопроводящая оболочка вокруг изолятора и центрального электрода. Второй электрод прикреплен к корпусу вилки. Между центральным и вторым электродами всегда есть воздушный зазор.
Когда заряд доставляется к центральному электроду свечи зажигания, этот заряд перепрыгивает через воздушный зазор между электродами в виде искры. Если синхронизация правильная, то искра воспламенит топливно-воздушную смесь в цилиндре двигателя. Таким образом, свеча зажигания — это то, что воспламеняет сгорание в бензиновом двигателе внутреннего сгорания.Излишне говорить, что важно, чтобы свеча зажигания работала правильно.
Часть рабочего колодца включает эффективную изоляцию. Плохо, если электричество может перейти от центрального электрода к токопроводящей вилке в другом месте, кроме электродов. Следовательно, материал, используемый в качестве изолятора, имеет решающее значение для правильной работы свечи зажигания.
Фарфоровые изоляторы свечей зажиганияВ первых изоляторах свечей зажигания использовался огнеупорный фарфор.Это керамика, сделанная из высококачественной глины, способной выдерживать очень высокие температуры. Глинисто-минеральный каолинит является основным ингредиентом. Если вы видели лабораторную посуду из белой керамики, которая использовалась для нагрева и плавления, то это один из примеров тугоплавкого фарфора. В США компания Coors была одним из крупнейших производителей огнеупорного фарфора.
Огнеупорный фарфор был логичным первым выбором для изоляторов свечей зажигания, но у него были некоторые проблемы, которые были быстро обнаружены.Примечательно, что фарфор был хрупким. При нагревании он также не расширялся так сильно, как металл в электроде или корпусе свечи. В результате первые фарфоровые изоляторы прослужили недолго, прежде чем они сломались.
изоляторы свечей зажигания слюдыОдним из первых материалов, используемых для добавления или замены фарфора, была слюда.
- Слюда — силикатный минерал, отличающийся сочетанием термостойкости, гибкости и прочности.
- Разновидность этого минерала, называемого книжной слюдой, веками использовалась для изготовления окон печей.
- Книжную слюду достать было легко, и она была недорогой.
Слюда использовалась в свечах зажигания вплоть до Второй мировой войны. Пример слюды в свече зажигания показан на рисунке ниже:
Свеча зажигания слюдяная из автомобильного руководства 1930-х годов. Номера соответствуют следующим частям свечи зажигания:1) Центральный электрод,
2) Клеммная гайка,
3) Контргайка изолятора или гайка электрода,
4) Слюдяные кольца изолятора,
5) Корпус изолятора (фарфор),
6) Монтажная гайка,
7) Медно-асбестовая шайба,
8) Корпус заглушки,
9) Боковой электрод. изоляторы свечи зажигания стеатита
Одной из проблем слюды в качестве изолятора было накопление углеродных отложений, которые препятствовали прохождению электричества через центральный электрод. Кроме того, слюда не так хорошо изолирует от паразитных электрических токов, как фарфор.
Еще одним минералом, используемым для компенсации слабых мест слюды и фарфора, был стеатит. Большинство людей знают стеатит по его обычному названию — мыльный камень.Это камень, в основном состоящий из талька. Поскольку она не такая прочная и гибкая, как слюда, ее часто использовали вместе со слюдой, например, свеча зажигания, показанная ниже:
Свечи зажигания Lodge были английской торговой маркой. Это еще один пример использования изолятора на минеральной основе. В этих довоенных пробках использовались как слюда, так и стеатит.Андалузит-силлиманитовые изоляторы
Только свечи зажигания марки Champion использовали силлиманит в качестве изолятора с 1921 по 1945 год.
Большая часть силлиманита в свечах зажигания возникла как минерал андалузит, первоначально добытый на шахте Чемпион в горах Инио-Уайт, недалеко от Долины Смерти в Калифорнии.
Андалузит имеет химическую формулу Al 2 SiO 5 . Когда вы нагреваете этот минерал, он превращается в минеральную форму силлиманита, который также имеет химическую формулу Al 2 SiO 5 . Разница между двумя минералами заключается в том, что силлиманит является превосходным материалом как для тепловой, так и для электрической изоляции. Он безоговорочно превосходит фарфор, слюду, стеатит и их комбинации.
Месторождение андалузита на руднике Чемпион представляет собой единственное в своем роде минеральное тело.Ни у кого в мире не было ничего подобного. По сути, Champion владела монополией на этот материал.
Свечи зажигания с изоляцией из силлиманита были безусловно лучшими из имеющихся. Каждый гоночный автомобиль и почти каждый двигатель самолета использовали свечи Champion по всему миру из-за их надежности и долговечности.
Еще одно месторождение андалузита и силлиманита в конечном итоге было открыто за пределами Лавлока, штат Невада, для производства изоляторов для свечей зажигания. Он тоже принадлежал и управлялся Champion.
КОНЕЦ ИЗОЛЯТОРОВ СВЕЧЕЙ ЗАЖИГАНИЯ НА МИНЕРАЛЬНОЙ ОСНОВЕ
Другие производители свечей зажигания не заботились о господстве Champion и ее монополии на андалузит и силлиманит.В 1930-х годах и Siemens в Германии, и свечи зажигания переменного тока в Соединенных Штатах первыми начали использовать спеченный оксид алюминия в качестве изоляционного материала. Спеченный оксид алюминия имеет почти такое же тепловое расширение, что и металлические детали в пробке, а также в три раза большую прочность и изоляционные свойства по сравнению с силлиманитом. Как только закончилась Вторая мировая война, спеченный оксид алюминия заменил все изоляторы свечей зажигания на минеральной основе, потому что это действительно был превосходный материал для работы.
Шахта Чемпион в графстве Инио, Калифорния, по сей день остается одним из самых известных мест добычи полезных ископаемых среди любителей полезных ископаемых.
♠
Все изображения, использованные в этой статье, находятся в открытом доступе.
Свеча зажигания — конструкция и техническая информация
Конструкция свечи зажигания
Свечи зажигания — один из наиболее неправильно понимаемых компонентов двигателя. За прошедшие годы возникло множество вопросов, которые сбили с толку многих людей.
Это руководство было разработано, чтобы помочь техническим специалистам, любителям или гоночным механикам понять, использовать и устранять неисправности свечей зажигания. Информация, содержащаяся в этом руководстве, применима ко всем типам двигателей внутреннего сгорания: двухтактным двигателям, роторным двигателям, высокопроизводительным / гоночным двигателям и уличным транспортным средствам.
Свечи зажигания — это «окно» в ваш двигатель (ваш единственный свидетель камеры сгорания), и их можно использовать в качестве ценного диагностического инструмента. Подобно термометру пациента, свеча зажигания отображает симптомы и условия работы двигателя.Опытный тюнер может проанализировать эти симптомы, чтобы отследить основную причину многих проблем или определить соотношение воздух / топливо.
Свеча зажигания выполняет две основные функции:
- Для воспламенения топливовоздушной смеси
- Для отвода тепла от камеры сгорания
Свечи зажигания передают электрическую энергию, которая превращает топливо в рабочую энергию. Система зажигания должна подавать достаточное напряжение, чтобы вызвать искру в зазоре свечи.Это называется «Электрические характеристики».
Температура запального конца свечи зажигания должна быть достаточно низкой, чтобы предотвратить преждевременное зажигание, но достаточно высокой, чтобы предотвратить засорение. Это называется «Тепловые характеристики» и определяется выбранным диапазоном нагрева.
Важно помнить, что свечи зажигания не выделяют тепло, , они могут только отводить тепло. Свеча зажигания работает как теплообменник , отводя нежелательную тепловую энергию от камеры сгорания и передавая тепло системе охлаждения двигателя.Диапазон нагрева определяется как способность свечи рассеивать тепло.
Скорость теплопередачи определяется по:
- Длина носа изолятора
- Объем газа вокруг носика изолятора
- Материалы / конструкция центрального электрода и фарфорового изолятора
Диапазон нагрева свечи зажигания не зависит от фактического напряжения, передаваемого через свечу зажигания. Скорее, диапазон нагрева является мерой способности свечи зажигания отводить тепло из камеры сгорания.Измерение теплового диапазона определяется несколькими факторами; длина керамического носика центрального изолятора и его способность поглощать и передавать тепло сгорания, состав материала изолятора и материала центрального электрода.
Тепловая мощность — путь теплового потока
Длина выступа изолятора — это расстояние от огневой точки изолятора до точки, где изолятор встречается с металлической оболочкой. Поскольку изолирующий наконечник является самой горячей частью свечи зажигания, температура наконечника является основным фактором предварительного воспламенения и загрязнения.
Независимо от того, установлены ли свечи зажигания в газонокосилке, лодке или гоночном автомобиле, температура наконечника свечи зажигания должна оставаться в пределах 500–850 ° C. Если температура наконечника ниже 500 ° C, область изолятора вокруг центрального электрода не будет достаточно горячей для сжигания нагара и отложений в камере сгорания.
Эти накопленные отложения могут привести к засорению свечей зажигания и пропуску зажигания. Если температура наконечника выше 850 ° C, свеча зажигания будет перегреваться, что может вызвать вздутие керамики вокруг центрального электрода и плавление электродов.Это может привести к преждевременному воспламенению / детонации и дорогостоящему повреждению двигателя. Для свечей зажигания идентичных типов разница от одного диапазона нагрева к другому заключается в способности удалить из камеры сгорания примерно от 70 ° C до 100 ° C. Температура запального конца запальной свечи проектируемого типа повышается на 10–20 ° C.
Температура наконечника и внешний вид конца обжига
Внешний вид запального конца также зависит от температуры наконечника свечи зажигания. Существует три основных диагностических критерия свечей зажигания: исправны, загрязнены и перегреты.Граница между загрязнением и оптимальной рабочей областью (500 ° C) называется температурой самоочистки свечи зажигания. Температура в этот момент — это температура, при которой сгорают накопившийся углерод и отложения сгорания.
Принимая во внимание, что длина выступа изолятора является определяющим фактором в диапазоне нагрева свечи зажигания, чем длиннее выступ изолятора, тем меньше тепла поглощается и тем дальше тепло должно проходить в водяные шейки головки блока цилиндров. Это означает, что вилка имеет более высокую внутреннюю температуру и считается горячей заменой.Горячая свеча зажигания поддерживает более высокую внутреннюю рабочую температуру для сжигания масла и нагара и не имеет никакого отношения к качеству или интенсивности искры.
И наоборот, холодная свеча зажигания имеет более короткий изолятор и поглощает больше тепла камеры сгорания. Это тепло распространяется на меньшее расстояние и позволяет вилке работать при более низкой внутренней температуре. Более холодный тепловой диапазон необходим, когда двигатель модифицируется для повышения производительности, подвергается большим нагрузкам или работает на высоких оборотах в течение значительного периода времени.Более холодный тип отводит тепло быстрее и снижает вероятность преждевременного воспламенения / детонации и оплавления или повреждения огневого конца. (Температура двигателя может повлиять на рабочую температуру свечи зажигания, но не на ее диапазон нагрева).
Ниже приводится список некоторых возможных внешних воздействий на рабочие температуры свечи зажигания. Следующие ниже симптомы или условия могут повлиять на фактическую температуру свечи зажигания. Свеча зажигания не может создавать такие условия, но она должна выдерживать высокие уровни нагрева… в противном случае ухудшатся рабочие характеристики и может произойти повреждение двигателя.
Смеси воздуха и топлива серьезно влияют на характеристики двигателя и рабочие температуры свечей зажигания.
- Обогащенная топливно-воздушная смесь вызывает падение температуры наконечника, вызывая загрязнение и ухудшение управляемости
- Обедненные топливно-воздушные смеси вызывают повышение температуры наконечника свечи и цилиндра, что приводит к преждевременному зажиганию, детонации и, возможно, серьезному повреждению свечи зажигания и двигателя
- Важно многократно считывать значения свечей зажигания в процессе настройки для достижения оптимальной топливно-воздушной смеси
Повышенная степень сжатия / принудительная индукция повышает температуру наконечника свечи зажигания и температуру в цилиндре
- Степень сжатия можно увеличить, выполнив любую из следующих модификаций:
- уменьшение объема камеры сгорания (т.е.е .: поршни с куполообразной головкой, головки камеры меньшего размера, фрезерные головки и т. д.)
- добавление принудительной индукции (закись азота, турбонаддув или наддув)
- Замена распредвала
- По мере увеличения компрессии необходимы более холодная свеча диапазона нагрева, более высокое октановое число топлива и особое внимание к моменту зажигания и соотношению воздух / топливо. Если не выбрать более холодную свечу зажигания, это может привести к повреждению свечи зажигания / двигателя
Опережение зажигания
- Увеличение угла опережения зажигания на 10 ° вызывает повышение температуры жала прибл.70 ° -100 ° С
Обороты двигателя и нагрузка
- Повышение температуры конца пламени пропорционально частоте вращения двигателя и нагрузке. При движении с постоянной высокой скоростью или при переноске / толкании очень тяжелых грузов следует установить свечу зажигания с более холодным диапазоном нагрева
Температура окружающего воздуха
- При понижении температуры воздуха плотность воздуха / объем воздуха увеличивается, что приводит к более бедной топливно-воздушной смеси.Это создает более высокое давление / температуру в цилиндре и вызывает повышение температуры наконечника свечи зажигания. Значит, надо увеличивать подачу топлива. При повышении температуры плотность воздуха уменьшается, как и объем всасываемого воздуха, и следует уменьшать подачу топлива.
Влажность
- По мере увеличения влажности объем забираемого воздуха уменьшается
- Результат — более низкие значения давления и температуры сгорания, что приводит к снижению температуры свечи зажигания и снижению доступной мощности.
- Топливно-воздушная смесь должна быть беднее в зависимости от температуры окружающей среды.
Барометрическое давление / высота
- Также влияет на температуру наконечника свечи зажигания
- Чем выше высота, тем ниже становится давление в баллоне. По мере того как температура цилиндра уменьшается, температура наконечника свечи
- Многие механики пытаются «преследовать» настройку, изменяя диапазоны нагрева свечи зажигания.
- Настоящий ответ — отрегулировать жиклер или смеси воздух / топливо, чтобы вернуть больше воздуха в двигатель
Типы аномального горения:
- Определяется как: воспламенение топливовоздушной смеси до заранее установленной метки угла опережения зажигания
- Вызвано горячими точками в камере сгорания… может быть вызвано (или усилено) из-за слишком большого времени задержки, слишком горячей свечи зажигания, низкооктанового топлива, обедненной воздушно-топливной смеси, слишком высокой компрессии или недостаточного охлаждения двигателя
- Переход на топливо с более высоким октановым числом, более холодную пробку, более богатую топливную смесь или более низкую степень сжатия может быть в порядке
- Вам также может потребоваться замедлить угол опережения зажигания и проверить систему охлаждения автомобиля.
- Предварительное возгорание обычно приводит к детонации; предварительное зажигание и детонация — два отдельных события
- Злейший враг свечи зажигания! (кроме обрастания)
- Может сломать изоляторы или сломать заземляющие электроды
- Прерывание чаще всего приводит к детонации
- Температура наконечника свечи может достигать более 3000 ° F во время процесса сгорания (в гоночном двигателе)
- Чаще всего вызывается горячими точками в камере сгорания.
- Горячие точки позволяют топливно-воздушной смеси предварительно воспламениться. Поскольку поршень движется вверх за счет механического воздействия шатуна, предварительно воспламененный взрыв будет пытаться заставить поршень опускаться. Если поршень не может подняться (из-за силы преждевременного взрыва) и не может опуститься (из-за восходящего движения шатуна), поршень будет дребезжать из стороны в сторону. Возникающая в результате ударная волна вызывает слышимый звук свистка. Это детонация.
- Большая часть повреждений, которые двигатель получает при «детонации», происходит от чрезмерного нагрева.
- Свеча зажигания повреждена как повышенными температурами, так и сопутствующей ударной волной или сотрясением мозга
- Утверждается, что свеча зажигания перестала срабатывать, когда не было подано достаточно напряжения для зажигания всего топлива, присутствующего в камере сгорания, в надлежащий момент рабочего такта (за несколько градусов до верхней мертвой точки)
- Свеча зажигания может давать слабую искру (или вообще не давать искру) по ряду причин: неисправная катушка, слишком сильное сжатие с неправильным зазором свечи, свечи зажигания с сухим или влажным загрязнением, недостаточная синхронизация зажигания и т. Д.
- Незначительные пропуски зажигания могут вызвать снижение производительности по очевидным причинам (если топливо не горит, энергия не вырабатывается)
- Сильные пропуски зажигания приведут к снижению расхода топлива, ухудшению управляемости и могут привести к повреждению двигателя
- Возникает, когда температура наконечника свечи зажигания недостаточна для сжигания нагара, топлива, масла или других отложений
- вызовет выщелачивание искры к металлической оболочке … отсутствие искры в зазоре свечи вызовет пропуски зажигания
- Свечи зажигания, загрязненные водой, необходимо заменить… свечи зажигания не загораются
- Свечи зажигания с сухим загрязнением иногда можно очистить, доведя двигатель до рабочей температуры
- Перед заменой загрязненных свечей зажигания обязательно устраните основную причину загрязнения
Ваши свечи зажигания разговаривают с вами?
Если бы неодушевленные предметы могли говорить, рассказам, которые они рассказывают, не было бы конца.Но хотя они могут быть не слышны, свечи зажигания в вашей поездке на самом деле вполне способные рассказчики. Вам просто нужно знать, как их читать — желательно до того, как двигатель вашего автомобиля, грузовика, внедорожника или мотоцикла выйдет из строя.
С этой целью автомобильные эксперты из E3 Spark Plugs предлагают несколько подсказок:
- Безопасные оттенки: Взгляните на кончики свечей зажигания. Если они где-то между белыми и серовато-коричневыми, это показатель того, что ваш двигатель в хорошей форме.Если вы видите розовый оттенок, не пугайтесь. Это просто признак отложений из-за присадок в неэтилированном топливе, сгоревших при сгорании.
- Цвет проблемы: Если наконечники свечей зажигания имеют угольный цвет и пахнут бензином, у вас потенциальная проблема. Это предупреждающий знак о том, что двигатель вашей поездки требует регулировки. В частности, это указывает на то, что цилиндр, из которого была снята свеча, не в состоянии полностью сжечь все всасываемое топливо. Распространенными виновниками являются заедание дроссельной заслонки, проблемы с зажиганием, чрезмерно богатая топливно-воздушная смесь или свеча с температурным диапазоном это слишком холодно.Черный покрытый сажей налет — еще один признак того, что неприятности грядут. Это может быть предупреждение о слабой системе зажигания из-за неисправного магнето или генератора, чрезмерно богатой топливной смеси из-за неправильно отрегулированного карбюратора или неправильно отрегулированной или неисправной дроссельной заслонки. Отложения коричневого цвета на электродах свечей зажигания или наконечниках изолятора могут означать предупреждение о поршневых кольцах или направляющих клапана. Если вы заметили черное маслянистое вещество, покрывающее центральный и заземляющий электроды, возможно, вы видите масло в камере сгорания из-за изношенных колец, направляющих клапанов или уплотнений клапанов.А коричневато-желтое глазурованное покрытие на наконечнике керамического изолятора может означать, что в вашей топливной присадке есть свинец.
- Трещины, сколы и разрывы: Если ваш изолятор свечи зажигания треснут, расколот или сломан, это может быть предупреждающим признаком проблемы с синхронизацией или использования слишком низкооктанового топлива.
- Эрозия: Проверьте центральный и заземляющий электроды свечи зажигания на закругленные края или другие признаки чрезмерного износа. Либо это может означать, что ваша поездка давно назрела, новый комплект свечей зажигания.
- Плавление: Расплавленный вид центра свечи зажигания, заземляющего электрода или наконечника керамического изолятора, вероятно, означает, что вы выбрали неправильную свечу для своего двигателя или что свеча была установлена неправильно. Это также может указывать на перекрестное срабатывание кабелей зажигания, чрезмерную синхронизацию, слишком бедную топливную смесь, накопление отложений в камере сгорания или горячие точки в камере сгорания из-за плохого рассеивания тепла.
- Изгиб: Если центральный или заземляющий электроды свечи зажигания согнуты в неправильном положении, или если керамический наконечник сломан или отсутствует, велика вероятность того, что внутри цилиндра находится посторонний предмет или неправильная резьба. длина использовалась при последней замене заглушек.
Чтобы убедиться, что вы выбрали подходящую вилку для своей поездки, просмотрите наш онлайн-каталог с перекрестными ссылками. И если вы еще не сделали этого, знайте, что уникальный дизайн E3 с алмазным пламенем означает более чистый, сильный и более экономичный процесс сжигания топлива.
Как работают свечи зажигания?
Автор: Уэйн Скраба, automedia.com
Свеча зажигания — это, казалось бы, простое устройство, хотя она предназначена для пара разных, но ответственных работ.Прежде всего, он создает (буквально) искусственная молния внутри камеры сгорания (ГБЦ) двигателя. Электрическая энергия (напряжение), которую он передает чрезвычайно высок, чтобы вызвать искру и «зажечь огонь» внутри управляемый хаос камеры сгорания. Здесь напряжение на Свеча зажигания может иметь напряжение от 20 000 до более чем 100 000.
Свечи зажигания тепловые характеристикиХотя он инициирует искру, чтобы вызвать возгорание, свеча зажигания не выдерживает.Это помогает отводить тепло от горения камеры в водяную рубашку ГБЦ.
Способность свечи зажигания отводить тепло из камеры сгорания. определяется «тепловым диапазоном» свечи зажигания. Температура обжига конец свечи зажигания должен поддерживаться на достаточно высоком уровне, чтобы предотвратить обрастание, но достаточно низкое, чтобы предотвратить преждевременное возгорание. Производители свечей зажигания называют это «тепловыми характеристиками». Тепловые характеристики или диапазон нагрева свечи зажигания, не имеет никакого отношения к количеству передаваемой энергии от системы зажигания через свечу зажигания.Диапазон нагрева свечи зажигания область, в которой свеча зажигания функционирует термически.
Холодные свечи зажигания против горячих свечей зажигания«Холодные» свечи зажигания обычно имеют короткий путь теплового потока. Это приводит к очень высокая скорость передачи тепла. Кроме того, короткий носик изолятора встречается на холодных свечах зажигания, имеет небольшую площадь поверхности, что не позволяет для большого количества поглощения тепла.
С другой стороны, «горячие» свечи зажигания имеют более длинный носик изолятора, так как а также более длинный путь теплопередачи.Это приводит к гораздо более медленной скорости теплопередача к окружающей головке блока цилиндров (и, следовательно, к воде пиджак).
Диапазон нагрева свечи зажигания должен быть тщательно выбран, чтобы создать оптимальные тепловые характеристики. Если диапазон нагрева неправильный, вы могут ожидать серьезные неприятности. Как правило, соответствующий огневой конец температура (примерно) 900-1450 градусов. Ниже 900 градусов, углерод возможно обрастание. Выше становится проблемой перегрев.
Повышение напряжения на свече зажиганияВ условиях эксплуатации свеча зажигания подключена к высоковольтной сети. генерируется катушкой зажигания (с помощью обычного распределителя или способом электронных средств).Когда электричество течет из катушки, напряжение разница возникает между центральным электродом и заземляющим электродом на свечу зажигания.
Из-за «зазора» свечи зажигания вместе с топливовоздушной смесью (которая действует как изолятор) внутри зазора, свеча зажигания не может сразу Пожар.
По мере увеличения напряжения примерно до 20000 вольт зазор в пределах свеча зажигания может «сломаться», и она загорится. Со снятой свечой зажигания от головки блока цилиндров и должным образом заземлен на огонь, вы можете услышать окончательный щелчок.Если условия достаточно темные, вы можете увидеть искру.
Щелчок, который вы слышите, по сути, является миниатюрным раскатом грома, а Искра, которую вы наблюдаете, похожа на миниатюрную форму молнии.
Внутри камеры сгорания интенсивное тепло, создаваемое свечой зажигания. создает небольшой огненный шар внутри промежутка. Огненный шар или горение «Ядро» расширяется, и цилиндр (по крайней мере теоретически) испытывает полное горение.
Конструкция свечи зажиганияС точки зрения конструкции свечи зажигания могут быть не такими простыми, как вы. считать.Фактически, это высокоточное оборудование.
Благодаря сотрудникам Champion Spark Plug мы можем предоставить вам полная разбивка различных функций вилки. Имейте в виду, что огромные большинство свечей зажигания имеют похожие (хотя и не обязательно идентичные) строительство.
На сопроводительных фотографиях вы можете увидеть, что многие из вышеперечисленных свечей зажигания особенности на самом деле выглядят. Проверь их.
Ребра: Ребра изолятора обеспечивают дополнительную защиту от вторичного напряжения или искр. перекрытие, а также помогает улучшить сцепление резинового чехла свечи зажигания к корпусу вилки.
Корпус изолятора отлит из керамики на основе оксида алюминия. Чтобы изготовить эту часть свечи зажигания методом сухого литья под высоким давлением. система используется. После формования изолятор обжигается в печи до температура, превышающая температуру плавления стали. Результатом этого процесса в компоненте, обладающем исключительной диэлектрической прочностью, высокими тепловыми проводимость и отличная устойчивость к ударам.
Изолятор: Корпус изолятора отлит из керамики на основе оксида алюминия.Чтобы изготовить эту часть свечи зажигания методом сухого литья под высоким давлением. система используется. После формования изолятор обжигается в печи до температура, превышающая температуру плавления стали. Результатом этого процесса в компоненте, обладающем исключительной диэлектрической прочностью, высокими тепловыми проводимость и отличная устойчивость к ударам.
Ударопрочность керамического изолятора свечи зажигания при сгорании сверхвысокого давления в условиях детонации
Ван З., Лю Х., Райтц Р.Д .: Детонационное сгорание в двигателях с искровым зажиганием. Прог. Энергия сгорания. Sci. 61 , 78–112 (2017)
Статья Google Scholar
Fan, Q., Qi, Y., Wang, Z .: Исследование влияния распространения пламени и тепловых условий на воспламенение сверхбедной смеси с помощью машины быстрого сжатия. Документ SAE 2019-01-0963
Mayer, M., Hofmann, P., Williams, J.и др.: Влияние моторного масла на преждевременное зажигание в бензиновых двигателях с прямым впрыском и сильным наддувом. МТЗ Worldw. 77 (6), 36–41 (2016)
Статья Google Scholar
Passow, E.J., Sethi, P., Maschewske, M., et al .: Введение в то, как предварительное зажигание на низких оборотах влияет на компоненты двигателя. SAE Paper 2017-03-28
Кавина, Н., Рохо, Н., Бусинаро, А. и др.: Анализ воспламенения до воспламенения, вызванного сильными детонациями в двигателе GDI с турбонаддувом.Energy Proc. 101 , 893–900 (2016)
Артикул Google Scholar
Уорм, Дж .: Влияние впрыска воды на работу двигателя с искровым зажиганием при работе с высокой нагрузкой. Мичиганский технологический университет, Хоутон (2017)
Google Scholar
Walker, W .: Глиноземные изоляторы для высоковольтных автомобильных систем зажигания. В: Сингх Г., Бхалла А., Махмуд М.М. и др. (ред.) Обработка, свойства и дизайн современной керамики и композитов, стр. 359–370. Уайли, Хобокен (2016)
Google Scholar
Ци, Ю., Ван, З., Ван, Дж. И др .: Влияние термодинамических условий на режим конечного сгорания газа, связанный с детонацией в двигателе. Гореть. Пламя 162 (11), 4119–4128 (2015)
Артикул Google Scholar
PCB: PCM Model 119B11. http://www.pcb.com/products.aspx?m=119B11. По состоянию на 10 февраля 2019 г.
Lee, J.H.S .: The Detonation Phenomenon. Издательство Кембриджского университета, Нью-Йорк (2008)
Книга Google Scholar
Мали Р.Р., Кляйн Р., Петерс Н. и др.: Теоретическое и экспериментальное исследование разрушения поверхности, вызванного ударами. Документ SAE
5 (1990)
Wang, Z., Лю, Х., Сонг, Т. и др .: Взаимосвязь между супердетонацией и преждевременным зажиганием. Int. J. Engine Res. 16 (2), 166–180 (2014)
Статья Google Scholar
Смит Г.П., Голден Д.М., Френклах М. и др .: GRI Mech 3.0. http://www.me.berkeley.edu/gri_mech/. По состоянию на 10 февраля 2019 г.