Как устроен лямбда зонд: Лямбда-зонд (датчик кислорода). Устройство лямбда-зонда

Содержание

Лямбда зонд в авто — что это такое и как работает

Грамотных автолюбителей такими терминами как ABS, ESP, катализатор, инжектор не удивишь. Расскажем что такое лямбда зонд в машине, для чего нужен и принцип его работы.

Жесткие экологические нормы узаконили применение на автомобилях каталитических нейтрализаторов – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – тут приходит на помощь датчик кислорода, он же лямбда зонд.

Что это такое

Название датчика лямбда зонд происходит от греческой буквы λ, которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. По сути, это датчик для измерения состава выхлопных газов, чтобы поддерживать оптимальный состав топлива и воздуха. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится одна часть топлива — лямбда равна 1. Обеспечить такую точность возможно только с помощью систем питания с электронным впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.

Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ). Тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива.

На некоторых моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора.

Принцип работы

Схема лямбда зонда на основе диоксида циркония, расположенного в выхлопной трубе.
1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400°С. Только в таких условиях циркониевый электролит приобретает проводимость. Разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала).

Особенность циркониевого лямбда-зонда — при малых отклонениях состава смеси от идеального напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В.

Зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при температуре датчика 500-800°С

Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент расположен внутри керамического тела датчика и подключается к электросети автомобиля.

Если не работает

В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в выхлопе, снижение мощности. Но машина при этом остается на ходу. Перечень неисправностей лямбда зонда достаточно большой и некоторые из них самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше поручить специалистам.

Отметим, что попытки замены неисправного устройства имитатором или применение обманок ни к чему не приведут. ЭБУ не распознает «чужие» сигналы и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».

Лямбда зонд – наиболее уязвимый датчик машины. Его ресурс составляет 60 – 120 000 км в зависимости от условий эксплуатации и исправности двигателя. Особенно чувствителен к качеству топлива – после нескольких плохих заправок он «умирает» и больше не работает.

Что такое лямбда зонд в машине и как его проверить

Для чего нужен лямбда зонд? Экология на сегодняшний день является очень острым вопросом. На новые автомобили ставится все больше катализаторов, которые значительно снижают содержание вредных веществ в выхлопных газах. Но без контроля и правильных условий эффективно работать эта система не сможет. Для этого и нужен лямбда зонд, который следит за составом выхлопных газов.

Из чего состоит и какое устройство работы лямбда зонда?

Лямбда зонд — один из важных датчиков в автомобилях с инжекторным впрыском топлива. Он считает количество кислорода в выхлопных газах. ЭБУ (Электронный блок управления) системы впрыска топлива принимает сигнал от датчика и, с его помощью, может регулировать количество подаваемого топлива в цилиндры и выставляет угол опережения зажигания для получения максимально производительной топливо-воздушной смеси.

Электронный блок изначально получает информацию об объеме воздуха, который попал во впускной коллектор от расходомера воздуха, который находится за воздушным фильтром автомобиля. Еще одним «источником информации» электронного блока управления является датчик абсолютного давления. Вакуумная трубка подключена одним концом к датчику абсолютного давления, а другим — к впускному коллектору. Именно по показаниям этой вакуумной трубки датчик абсолютного давления отправляет сигнал на ЭБУ.

Ориентируясь по полученным данным, Электронный блок управления «решает» сколько впрыснуть топлива в цилиндр через форсунки, а по датчику лямбда зонд он решает нужно лить больше или меньше бензина для оптимальной работы автомобиля. Это и есть принцип работы лямбда зонда.

В большинстве автомобилей стоит один лямбда зонд, но сегодня можно встретить машины и с двумя датчиками. Применение двух датчиков кислорода, позволяет усилить контроль, за выхлопными газами автомобиля. Это поможет достигнуть наиболее эффективной топливо-воздушной смеси и работы катализатора с учетом всех факторов.

Чтобы разобраться, как работает лямбда зонд лучше, нужно понять, из чего он состоит.

Датчик кислорода — это два электрода: внешний и внутренний. Внешний электрод датчика кислорода изготовлен из металла с керамическими изоляторами и его наконечник покрыт платиной методом напыления и из-за этого очень чувствителен к кислороду. Он просчитывает количество кислорода в выхлопных газах.  Внутренний электрод изготавливается из циркония и его рабочая  температура до 1000°С, именно по этой причине кислородные датчики оснащены подогревателями. Это очень помогает лямбда зонду работать в момент холодного запуска двигателя.

Датчик кислорода бывает двух видов:

  • двухточечный датчик
  • широкополосный датчик.

Внешний вид конструкции датчиков почти одинаковая, но выполняют они свои функции по-разному.

Двухточечный датчик содержит два электрода. Он подсчитывает коэффициент избытка воздуха в топливной смеси. Есть определенные параметры и нормы. Этот коэффициент в идеальных условиях равен единице. Но из-за некачественного бензина и не слишком чистого кислорода в наших городах он равен приблизительно 1,03 — 1,05.

Широкополосный датчик — это более новая версия лямбда зонда. В нем находятся два керамических элемента, закачивающий и двухточечный. Закачивающий элемент – физически закачивает в себя кислород из отработанных газов автомобиля, с использованием определенной силы тока.

Признаки неисправности лямбда зонда?  

Лямбда зонд — уязвимый датчик автомобиля. Его срок службы зависит от условий эксплуатации двигателя автомобиля. Но в среднем ресурс лямбда зонда составляет от 40 тысяч до 80 тысяч километров. 

Лямбда зонд признаки неисправности:

  1. увеличение расхода бензина;
  2. нехарактерный запах из выхлопной трубы;
  3. лампочка «check engine».       

Датчик улавливает большое количество факторов, которые влияют на работу автомобиля, но особенно чувствителен датчик лямбда-зонд к качеству топлива. Так как основная функция его связана именно с выхлопными газами, а качество бензина является самой первой причиной неправильного соотношения углекислого газа и кислорода из топливо-воздушной смеси.

Самый главный момент в автомобиле — впрыск топлива. Именно поэтому неисправность этого датчика влияет на расход топлива. ЭБУ автомобиля не получает правильную информацию о составляющей выхлопных газов и из-за этого может лить больше топлива. Оно не успевает полностью сгорать и просто остается в выхлопной системе в виде черного нагара. Этот налет мешает датчику работать. Можно использовать жидкости для чистки и самостоятельно протирать датчик, но не проще ли просто проконсультироваться на ближайшей СТО?

Если же ЭБУ не получает никакой информации от лямбда зонда, то он начинает работать по аварийной карте. Аварийная карта — это шаблон, который загружен в «мозги» автомобиля для оперативного реагирования. При этом на приборной панели обязательно должен загореться значок  «check engine», который даст сигнал автовладельцу, что нужно обязательно обратиться к автомеханику и выяснить причину поломки. 

Есть еще несколько «сигналов», которые могут свидетельствовать о неисправности лямбда зонда. Один из самых заметных это нехарактерный запах из выхлопной трубы. Значит лямбда зонд не справляется со своей задачей и не посылает сигнал на ЭБУ. Но этот признак очень «обобщенный», так как запах может означать еще и выход из строя свечей, катушек, катализатора и т.д.

 В случае поломки лямбда зонда также может пострадать и EGR система. В этом случае вакуумный клапан системы EGR будет неправильно функционировать.  

Как проверить лямбда зонд?

У всех инжекторных автомобилей есть блок управления, он позволяет диагностировать причину поломки в определенном узле. При неисправности на приборной панели автомобиля обязательно загорится лампочка «Check Engine». Сейчас автоконцерны делают все возможное для того, чтобы автовладельцы быстро могли понять и предотвратить выход из строя любого узла автомобиля. Лампочка «Check Engine» — это один из главных знаков, что нужно ехать на станцию.

Проверить работу датчика лямбда зонда можно при посещении станции, где проведут компьютерную диагностику и выяснят причину неисправностей. На станции механики должны будут подключить провод в диагностический разъем авто и снять цифровой код ошибки. По показаниям компьютерной диагностики будет понятно, что не так с узлами автомобиля и какая причина поломки. Если компьютерная диагностика не показала ошибок, то есть еще «механическая» проверка лямбда зонда. Можно снять датчик и проверить нет ли там нагара из-за неполного сгорания топлива. Тогда его можно просто почистить. Так же можно использовать другие виды проверки. Такие как проверить лямбда зонд тестером или подключить вольтметр. На станциях механики меряют сопротивление лямбда зонда, подключив тестер, или меряют вольтметром напряжение, которое лямбда зонд посылает на электронный блок управления. Проверка датчика вольтметром — это не самая точная и продуктивная диагностика, так как вольтметр не покажет реальные причины поломки. Он может проверить только подачу тока на «мозги» автомобиля. Но если на станции нет возможности проверить с помощью компьютера, то механики используют вольтметр.

Лучше всего не заниматься диагностикой и починкой такого сложного узла автомобиля, как лямбда зонд, самостоятельно, а обратиться за помощью на СТО. Через сервис «Autobooking» можно выбрать самую удобную станцию техобслуживания и найти квалифицированную команду автомехаников для ремонта Вашего автомобиля. Специалисты качественно и быстро смогут произвести процедуру «замена лямбда зонда» или проверить состояние этого узла.

Если Вам необходимо провести замену лямбда зонда, воспользуйтесь формой ниже для поиска СТО:

Принцип работы датчика Лямбда зонд

Любознательные автолюбители давно уже слышали о таких системах, как антиблокировочная тормозная система (ABS) или стабилизация курсовой устойчивости (ESP), да и о других тоже. Сегодня поговорим о датчике Лямбда зонд, рассмотрим принцип работы датчика Лямбда зонд, узнаем для чего надо датчик Лямбда зонд, за что он отвечает и так далее.

С каждым годом человечество все больше задумывается о сохранении окружающей среды, ведь не мало было упущено в прошлом, надо подумать и о будущем. Узаконивание жестких экологических норм относительно автомобилей, привело к разработке и применению новых устройств, таких как каталитические нейтрализаторы.

Каталитический нейтрализатор

 

Каталитический нейтрализатор – это устройство, назначение которого является снижение вредных выбросов в окружающую среду. Катализатор очень полезная вещь, только для его корректной работы следует соблюдать некоторые условия. Огромное влияние на работу катализатора оказывает состав топливно-воздушной смеси. Именно от качества топливно-воздушной смеси и зависит ресурс работы катализатора. Поэтому и был разработан датчик Лямбда зонд, который отвечает за контроль состава этой же топливно-воздушной смеси. В просто народе его называют датчик кислорода.

Что такое Лямбда зонд икак выглядит датчик Лямбда зонд?

Не секрет, что свое название датчик получил от обозначения коэффициента избытка воздуха, который обозначается греческой буквой Лямбда. Лямбда зонд применяется для измерения состава отработавших газов и содействует в дальнейшем для поддержания оптимального состава смеси топлива и воздуха. Оптимальное соотношение топливно-воздушной смеси обеспечит качественное сгорание, что уменьшит выброс вредных веществ в атмосферу.

Оптимальный состав топливно-воздушной смеси это когда на 14,7 частей воздуха приходится 1 часть топлива, при этом Лямбда равняется одному. На старых советских двигателях такого сложно было добиться. А в современных автомобилях для этого используют системы питания с электронным впрыском топлива, которая взаимодействует с датчиком Лямбда-зонд.

Как измеряется избыток воздуха в топливно-воздушной смеси?

Избыток воздуха в топливно-воздушной смеси измеряется путем определения в отработавших газах содержания остаточного кислорода (О2). Этим объясняется и расположение датчика в выпускном коллекторе непосредственно перед катализатором.

Для считывания сигнала с Лямбда датчика используется электронный блок управления системы впрыска топлива (ЭБУ), который отвечает за оптимизацию состава топливно-воздушной смеси, то уменьшая, то увеличивая подачу топлива в цилиндры двигателя.

Некоторые производители автомобилей пошли еще дальше, и начали устанавливать по два Лямбда датчика в выхлопной системе, перед катализатором и после него. Два датчика Лямбда устанавливали для того, чтобы увеличить точность приготовления горючей смеси и улучшить работу катализатора.


Принцип работы лямбда-зонда

Схема датчика кислорода лямбда зонда на основе диоксида циркония: 1 – твердый электролит; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – сигнальный контакт; 6 – выхлопная труба.

Наиболее качественное измерение выхлопных газов Лямбда датчиком обеспечивается при температуре 300-400 градусов Цельсия. При такой температуре Циркониевый электролит становиться более проводимым, вследствие чего на электродах датчика появляются выходное напряжение.

Поэтому при запуске и прогреве двигателя датчик не используется. На этих режимах работы двигателя контроль качества топливно-воздушной смеси осуществляют датчики положения дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик количества оборотов коленчатого вала.


На схеме представлена зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при 500-800°С температуре датчика.

Для качественной работы датчика при низких температурах применяют принудительные нагревательные элементы.

Что будет если не работает датчик Лямбда?

Если не работает датчик лямбда зонд, тогда ЭБУ выбирает средние параметры работы, считывая данные с своей памяти. Параметры топливно-воздушной смеси будут разниться от идеальной.

К чему приведет поломка Лямбда датчика?

Поломка Лямбда датчика приведет к повышению расхода топлива, на холостом ходу двигатель будет работать неравномерно, в выхлопных газах будет содержаться повышенный уровень СО, упадет мощность двигателя, но автомобиль будет на ходу.

Самому проверить Лямбда датчик достаточно сложно, поэтому лучше проконсультироваться с специалистами.

Какой срок службы Лямбда датчика?

Срок службы Лямбда датчика зависит от качества заливаемого топлива. Бывает так, что достаточно нескольких заправок некачественным бензином и датчик приходит в негодность. Средний срок службы Лямбда датчика составляет от 40 до 80 тыс. км пробега.

Лямбда-зонд (датчик кислорода). Устройство лямбда-зонда

  • Замена лямбда-зонда
  • Установка лямбда зонда

Строгие экологические нормы (которые, к тому же, постоянно ужесточаются) требуют постоянного контроля токсичности выхлопа автомобиля. За параметрами следит блок управления двигателем, регулируя степень обогащения топливной смеси. Для правильной работы этого компьютера требуются специальные датчики.

Система, в которой установлены кислородные датчики, функционирует следующим образом:

  1. В начале выхлопной трубы находится катализатор, снижающий токсичность отработанных газов.
  2. Перед катализатором размещен датчик кислорода (лямбда зонд), который анализирует неочищенный состав выхлопа. Этот элемент помогает формировать правильную смесь. Если для поддержания требуемой мощности двигателя расход топлива слишком большой, компьютер дает команду на снижение количества бензина.
  3. После каталитического нейтрализатора находится второй датчик О2. Он отвечает в основном за оценку токсичности выхлопа. Его показания также меняют настройки обогащения топливной смеси.

Становится понятно, что датчик лямбда зонда влияет не только на экологию, а также на мощность автомобиля и расход топлива.

Важно! Речь идет о системе с двумя лямбдами. Автомобили, в которых установлен один кислородный датчик, встречаются сейчас относительно редко. Следует знать, что пара лямбд (до и после катализатора) устанавливается на выходе из каждого выпускного коллектора. Если у вас двигатель V6, V8 или V10, с двумя коллекторами – количество датчиков удваивается.

Ресурс лямбды составляет 50-100 тысяч километров, в зависимости от условий эксплуатации, особенности самого датчика и ряда других факторов. Это достаточно дорогой расходник, его замена ощутима для кошелька.

Как работает датчик концентрации кислорода 

Принцип действия рассматриваемого элемента основан на изменении электрического потенциала между электродами, при различном содержании кислорода в анализируемом воздухе. Один электрод – внешний, выполнен с применением платины (это оправдывает высокую стоимость). Второй – внутренний, из циркония. Эти металлы при прохождении атомов кислорода, формируют некоторый потенциал, увеличивающийся при повышении концентрации О2.

Для нормальной работы датчика требуется температура от 300 до 1000 °C. Пока двигатель не прогрелся, система не функционирует должным образом. Мощность силовой установки избыточна, токсичность выхлопа – высокая. Для моментальной готовности лямбды, внутренний электрод нагревается. К нагревателю подводятся дополнительные провода питания.

Универсальный кислородный датчик может иметь различную конструкцию – широкополосный, двухточечный, коаксиальный. Принцип анализа концентрации О2 один и тот же.

Неисправность лямбда зонда приводит к серьезным проблемам в работе двигателя. Поэтому не стоит игнорировать поломку. И тем более, нельзя самостоятельно пытаться отремонтировать датчики. Даже если Вы знаете, где находится лямбда зонд, его легко повредить при демонтаже. В условиях высоких температур резьба намертво прикипает. А использовать стандартный накидной ключ невозможно, по причине длинных проводов, выходящих из датчика.

Обратившись в сервис «Ваш глушитель», Вы получите грамотную диагностику и профессиональный ремонт без повреждения хрупких лямбда зондов. Наши мастера знают все неисправности датчика кислорода, и смогут устранить поломку с минимальными финансовыми затратами. Не обязательно сразу менять деталь, некоторые дефекты подлежат ремонту. Специалисты нашего сервиса по ремонту выхлопных систем помогут Вам сэкономить на ремонте.

Лямбда зонд,датчик кислорода.Устройство и принцип работы.

Для того, чтобы добиться наибольшей продуктивности от работы двигателя необходимо обеспечить наилучшее сгорание топливно-воздушной смеси, в свою очередь для этого необходимо точно определить необходимые пропорции впрыскиваемого топлива и поступающего воздуха. Полученная смесь гарантирует наилучшее сгорание, продуктивную работу и наименьшее количество вредных веществ от выхлопа. Для определения доли кислорода в отработанных газах автомобиля, используется кислородный датчик (он же лямбда зонд, в народе).

Такой датчик используется только на инжекторных автомобилях. Лямбда зонд устанавливается в выхлопной системе автомобиля, некоторые модели авто могут содержать в комплектации 2 кислородных датчика, в таком случае один из них устанавливается до катализатора, второй – после катализатора. Применение 2 датчиков, позволяет усилить контроль, за отработанными газами автомобиля, тем самым достигнуть наиболее эффективной работы катализатора.

Как работает лямбда зонд?
Как Вам известно, дозировкой подаваемого топлива занимается электронный блок управления, он подает сигнал на форсунки о количестве необходимого топлива в камере сгорания в тот или иной момент времени. Лямбда зонд, в этом процессе выступает в качестве устройства обратной связи, благодаря которому, происходит правильная дозировка топлива на количество подаваемого воздуха. Правильно рассчитанная смесь очень важна как с экологической точки зрения, так и с экономической. На сегодняшний день, одним из важнейших требований к производству автомобилей является экологическая безопасность, поэтому новые автомобили комплектуются как правило каталитическим нейтрализатором (катализатором) и двумя датчиками лямбда зонда. Такое сочетание устройств позволяет свести к минимуму экологический вред, который наносят автомобили окружающей среде, но при возникновении поломки в одном из функциональных узлов выпускной системы, водитель попадет на приличные деньги, ведь все это не так то и дешево стоит.

Устройство лямбда зонда.
Сам датчик состоит из 2 электродов, внешнего и внутреннего. Внешний электрод сделан из платинового напыления, поэтому особо чувствителен к кислороду, из за химический свойств платины, ну а внутренний сделан из циркония. Лямбда зонд устанавливается таким способом, чтобы через него проходили отработанные газы автомобиля, при прохождении, внешний электрод улавливает кислород в отработанных газах, при этом изменяется потенциал между электродами, чем больше кислорода – тем выше потенциал! Особенностью циркониевого сплава, из которого сделан внутренний электрод – это его рабочая температура, которая достигает отметки в 300-1000 градусов. Именно по этой причине кислородные датчики имеют в своей конструкции подогреватели, которые доводят температуру самого датчики до рабочей в момент холодного запуска двигателя.

Лямбда зонды бывают 2 видов:

  • Двухточечный датчик.
  • Широкополосный датчик.

Эти два вида датчика между собой схожи по внешним признакам, но при этом выполняют работу различными способами.

Двухточечный датчик – это пример того датчика, который мы описывали ранее, состоит он с двух электродов, он фиксирует коэффициент избытка воздуха в топливной смеси, по величине концентрации кислорода в отработанных газах автомобиля.

Широкополосный датчик – является современной конструкцией лямбда зонда, в нем значение получают благодаря использование силы тока закачивания. По своей конструкции широкополосный датчик состоит из двух керамических элементов, двухточечного и закачивающего. Закачивающий элемент – физическим процессом закачивает в себя кислород из отработанных газов автомобиля, с использованием определенной силы тока. Датчик держит постоянное напряжение 450 мВ, если концентрация кислорода уменьшается – напряжение между электродами возрастает и подается сигнал в электронно управляющий блок. Как только сигнал поступил на ЭБУ, создается ток определенной силы на закачивающем элементе, этот ток обеспечивает закачку кислорода в измерительный зазор. В этом всем процессе, величины силы тока, которая подается на закачивающий элемент – это уровень концентрации кислорода в отработанных газах.

Основные причины и признаки неисправностей. Существует несколько признаков, по которым можно определить неисправность кислородного датчика:

  • Увеличение токсичности выхлопных газов. Этот показатель на «глаз» определить невозможно, только с помощью замера специальным прибором, можно сделать вывод что уровень СО выхлопных газов увеличен. Показания прибора о увеличении СО гласит о нерабочем датчике лямбда зонд.
  • Увеличение расхода топлива. Этот признак более заметен, чем предыдущий. Любой автомобилист интересуется, какой количество топлива расходуется автомобилем на определенное расстояние, поэтому повышение расхода будет заметно практически сразу. Единственный нюанс в этом способе определения – не всегда увеличение расхода топлива говорит о неисправности кислородного датчика.
  • Check Engine. Все инжекторные автомобили имеют блок управления, который можно диагностировать на причину поломки в том или ином узле. Как правило, при появлении неисправности на приборной панели загорается соответствующая лампочка «Check Engine». В большинстве случаев, горение этой лампы говорит о неисправности лямбда зонда, более подробно можно узнать при диагностике на сервисе.

Причины неисправностей:

  • Качество топлива. При некачественном топливе, на кислородном датчике откладывается небольшими долями свинец, этот слой со временем снижает чувствительность внешнего электрода к кислороду. Такой датчик можно со временем смело считать нерабочим.
  • Механическая неисправность. К этим неисправностям относятся чисто механические повреждения самого датчика. Например: повреждение корпуса датчика, нарушение целостности обмотки обогрева и прочее. Решаются такие причины путем замены датчика на новый, ремонт практически невозможен и не целесообразен.
  • Неисправность в топливной системе автомобиля. Из за неисправности форсунок, в цилиндры двигателя подается большее количество топлива, чем требуется, следовательно, оно не сгорает, а выходит в выхлопную систему в виде черного налета (сажи). Со временем эта сажа накапливается на всех узлах выхлопной системы автомобиля, в том числе и на лямбда зонде, это становиться причиной неправильной работы датчика. Как лечение, можно использовать тряпки и средства очистки, чтобы вычистить кислородный датчик, но если такие загрязнения будут постоянными – можно смело выбрасывать датчик и устанавливать новый.

Следите за автомобилем и своевременно выполняйте диагностику, это поможет сохранить функциональные узлы в хорошем состоянии на протяжении длительного времени.

Кислородный датчик: устройство, назначение, диагностика

Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.

Лямбда и стехиометрия двигателя

Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.

Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.

Зависимость мощности и расхода топлива от состава смеси

Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.

Зачем нужен кислородный датчик

Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.

Схема лямбда-коррекции двигателя

Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.

Где находится кислородный датчик

Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.

Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.

Устройство кислородного датчика

Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.

Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.

В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.

Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.

Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.

Причины и признаки неисправности лямбда-зонда

Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.

Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.

Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.

Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.

Универсальные кислородные датчики

Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.

Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.

Что такое лямбда-зонд или кислородный датчик

Согласно строгому определению, лямбда-зонд или кислородный датчик – это устройство, оценивающее концентрацию кислорода в отработавших выхлопных газах. Казалось бы, зачем «мозгам» двигателя знать, что вылетает наружу? Очень просто – чтобы приготовить оптимальную топливно-воздушную смесь и снизить токсичность выхлопных газов.

При чем тут лямбда?

Название «лямбда-зонд» не случайно происходит от греческой литеры «лямбда» (λ) – в автомобилестроении она обозначает коэффициент избытка воздуха в топливно-воздушной смеси (соотношении топлива и воздуха). Когда ее состав оптимален – а таким принято считать 14,7 кг воздуха к 1 кг топлива – то коэффициент избытка воздуха равен единице, а смесь считается стехиометрической и обеспечивает полное сгорание топлива. В зависимости от коэффициента существует три вида топливно-воздушной смеси – это упомянутая выше оптимальная стехиометрическая, «богатая» с избытком топлива (в данном случае λ < 1) и «бедная» с не оптимально большим содержанием воздуха (λ > 1).

Если датчик увидел наличие свободного кислорода, не вступившего в реакцию, то это означает, что топлива должно быть больше. В противном случае, когда воздуха наоборот мало, требуется сократить подачу горючего.

Двигатели способны работать не только на оптимальной топливно-воздушной смеси, но также на «богатой» или «бедной» – все зависит от целей и задач, к которым относится динамика, экономичность и снижение вредных выбросов. Наименьшее потребление топлива и чистота выхлопа будет при лямбде, равной единице, а на обогащенной смеси двигатель будет развивать оптимальную мощность. Отметим, что заметные отклонения от стехиометрической смеси могут привести к поломкам как выпускной системы, так и двигателя. Раз уж зашел разговор об идеальной топливно-воздушной пропорции, то следует отметить следующее. Двигатель нечасто работает на стехиометрической смеси, но при этом постоянно стремиться к ней. Удерживать «идеальный» состав длительное время невозможно, поскольку на смесеобразование влияет масса факторов. Таким образом, электронный блок управления постоянно регулирует его, удерживая в условно оптимальных рамках.

Где расположен кислородный датчик

Лямбда-зонд находится в выпускном тракте (проще говоря, он вкручен в систему) и соседствует с каталитическим нейтрализатором. У современных автомобилей кислородный датчик установлен как перед ним (называется верхний лямбда-зонд), так и на выходе катализатора (нижний лямбда-зонд). Конструктивно они идентичны, но выполняют несколько разные замеры. Так, верхний датчик отслеживает, сколько кислорода содержится в отработавших газах. Сигнал с него отправляется в электронный управляющий блок двигателя и тот считывает характеристики топливно-воздушной смеси – проще говоря, понимает, стехиометрическая ли она, обогащенная или обедненная. В зависимости от результата, происходит корректировка объемов подаваемого в цилиндры топлива для приготовления смеси с оптимальным составом. Что касается нижнего кислородного датчика, то он нужен для контроля работы каталитического нейтрализатора и более точной корректировки. Отметим, что в стародавние времена гораздо менее строгих экологических норм нижние лямбда-зонды не применялись.

Как устроен кислородный датчик

Наиболее популярны устройства на основе диоксида циркония. Выглядят они как металлический стержень, конец которого скруглен, с проводом. Непосредственно с выхлопными газами контактирует наружный электрод (для этого в защитном кожухе предусмотрены отверстия), в то время как с атмосферой взаимодействует внутренний. Между ними как раз и находится двуокись циркония или твердый электролит. Оба электрода имеют платиновое напыление. Есть и нагревательный элемент, который призван как можно скорее выводить лямбда-зонд на высокую рабочую температуру в районе 300 °С.

Неисправности кислородного датчика

Датчик работает в крайне неблагоприятных тяжелых условиях, находясь в потоке горячих отработавших газов. Водитель узнает о неисправности и дело не в загоревшейся контрольной лампе Check Engine на приборной панели. Выход лямбда-зонда из строя сопровождается увеличением расхода топлива, неустойчивой работой двигателя на холостых оборотах и снижением мощности, а также характерным «бензиновым» запахом из выхлопной трубы – резким и «токсичным». В общем, автомобиль подаст сигнал.

Причины неисправностей кислородного датчика редко провоцируются механическими повреждениями – все-таки он сравнительно неплохо защищен. Наиболее часто лямбда-зонд требует замены из-за износа в процессе эксплуатации, либо загрязнения или обрыва электрической цепи нагревательного элемента. Прикончить датчик может некачественное топливо, технические проблемы, например, сгорание масла из-за плохого состояния маслосъемных колец или антифриз в топливе. Правда, в этом случае проблемы с лямбда-зондом будут наименьшей из сложностей. Бывает, что он работает с перебоями из-за электрического питания и окисления контактов, что отражается на топливно-воздушной смеси и, соответственно, поведении автомобиля.

Можно ли заменить самостоятельно

Как видите, неисправность кислородного датчика не только делает езду на автомобиле проблематичной, но в ряде ситуаций способна повлечь за собой другие поломки. Поменять датчик можно самостоятельно, если до него получиться добраться. Перед этим следует обесточить автомобиль и снять с датчика колодку. Дальше – самое интересное: далеко не всегда удается выкрутить прикипевший лямбда-зонд с первого раза, поэтому следует проявить осторожность, чтобы не сломать. Если вывернуть удалось, то не забудьте перед установкой нового очистить резьбу в выпускной системе.

Лямбда-зонд — принцип работы и его применение

В современных автомобилях используются различные виды цифровых систем управления для улучшения характеристик двигателя. Эти компьютеризированные системы полагаются на входные данные, предоставляемые различными типами датчиков, присутствующих в транспортном средстве, для управления двигателем, контроля выбросов и т.д. эмиссия и т. д. может произойти.Некоторые из датчиков автомобильного двигателя — это датчики массового расхода воздуха, датчик скорости двигателя, датчик детонации, датчик давления, датчик кислорода и т. Д. Датчик кислорода также известен как датчик лямбда. Этот датчик присутствует в выхлопной системе автомобиля.


Что такое лямбда-зонд?

Лямбда-зонд, также известный как датчик кислорода, измеряет количество несгоревшего кислорода в выхлопной трубе. Выходной сигнал этого датчика используется для регулировки топливовоздушной смеси в двигателе внутреннего сгорания.Этот датчик помогает определить, является ли это соотношение воздух-топливо бедным или богатым.

Лямбда-зонд

Первый автомобильный лямбда-зонд был изобретен компанией Robert Bosch GmbH в 1976 году. Volvo и Saab первыми использовали лямбда-зонд. К 1993 году этот датчик был внедрен почти во все бензиновые автомобили в Европе.

Принцип работы

Лямбда-зонд состоит из двух частей — датчика, который нагревается, и датчика нагрева. Пороговая температура срабатывания лямбда-зонда составляет от 300 ° C до 600 ° C.Датчик нагрева помогает лямбда-датчику достичь своей рабочей температуры.

Когда двигатель достигает нужной температуры, датчик начинает измерять несгоревший кислород, присутствующий в выхлопных газах. Эти выходные данные отправляются в компьютерный блок, где он вычисляет соотношение воздух-топливо и проверяет справочную таблицу для оптимизации этого отношения воздух-топливо. На основе этой информации высвобождается рассчитанное количество топлива, необходимое двигателю для сгорания при стехиометрическом соотношении, что обеспечивает полное сгорание.

В автомобилях используются два лямбда-зонда: один установлен перед нейтрализатором, который контролирует систему, а другой — за нейтрализатором, чтобы убедиться, что первый работает должным образом.

Приложения

Фактическое количество лямбда-зондов, имеющихся в автомобиле, зависит от года выпуска, марки, модели и двигателя автомобиля. Лямбда-датчики (датчики кислорода) помогают улучшить характеристики автомобиля, избегая дорогостоящих повреждений CAT. Использование хорошего лямбда-зонда может сократить потребление топлива автомобилем до 15 процентов.

Этот датчик очень полезен при низком расходе топлива, низком уровне выбросов загрязняющих веществ, проверьте значения выбросов выхлопных газов. Этот датчик со временем может устареть и потребовать замены. Старые датчики передают информацию с очень низкой скоростью, что приводит к неправильной топливно-воздушной смеси в нейтрализаторе катализатора. Это приводит к неправильной работе, повышенному расходу топлива автомобилем и включению света двигателя.

Регулярно очищая датчик от накипи и очищая его водородом, можно повысить надежность и производительность датчика.Рекомендуется периодически проверять исправность этого датчика. Назовите конкретный автомобиль, в котором установлены 4 лямбда-зонда.

Лямбда-зонд или датчик кислорода

Лямбда-зонд или датчик кислорода | Функционирование и обслуживание

Что это?

Лямбда-зонд, также называемый кислородным датчиком или датчиком O2, впервые появился в 1970-х годах, но не был принят в Европе до 1993 года, особенно для автомобилей с бензиновым двигателем. Это позволяет соответствовать стандарту EURO 1 (стандарт выбросов загрязняющих воздух газов).

Лямбда-зонд, расположенный перед катализатором, постоянно измеряет количество кислорода в выхлопных газах для изменения топливовоздушной смеси. После катализатора можно найти второй. Таким образом, это позволяет проверять правильность работы.

Как это работает?

Есть два типа лямбда-зондов:

  • Зонд нагревается выхлопными газами, с рабочим порогом от 300 ° C до 600 ° C.
  • Нагрев зонда , в свою очередь, позволяет быстрее достичь рабочей температуры.

После прогрева двигателя датчик измеряет количество кислорода, присутствующего в выхлопных газах, затем отправляет эту информацию в компьютер, который отвечает за оптимальную адаптацию топливовоздушной смеси.

Какие проблемы возникают с лямбда-зондом?

Срок службы лямбда-зонда составляет около 150 000 км.Однако с возрастом он все медленнее и медленнее отправляет информацию на компьютер, что приводит к ухудшению его работы. Затем он обогащает топливно-воздушную смесь, вызывая засорение датчика и каталитического нейтрализатора.

Каковы симптомы засорения лямбда-зонда?

  • Горят фары двигателя
  • Перерасход бензина
  • Нестабильная работа на холостом ходу
  • Снижение производительности
  • Отказ при проверке пригодности к эксплуатации

Как обслуживается лямбда-зонд?

Сохраните свой лямбда-зонд дольше благодаря удалению накипи с помощью впрыска водорода FlexFuel Energy Development®.Фактически, регулярная чистка двигателя позволяет замедлить процесс старения лямбда-зонда.

вернуться наверх

Этот сайт использует файлы cookie, чтобы запомнить ваши предпочтения и оптимизировать ваше путешествие.
Нажимая «ПРИНЯТЬ», вы соглашаетесь на установку этих различных файлов cookie.
Чтобы узнать больше, посетите нашу страницу Политики конфиденциальности.

Политика конфиденциальности и использования файлов cookie

Что делает лямбда-зонд?

Что такое лямбда-зонд?

Проще говоря, лямбда-зонд измеряет количество кислорода в выхлопных газах, чтобы убедиться, что двигатель правильно сжигает топливо.

Сейчас мы подробнее рассмотрим, как и почему. Мы также ответим на несколько других вопросов, таких как «как вы проверяете лямбда-зонд?» И «какой лямбда-зонд мне выбрать?»

Поддержание нормальной работы двигателя при ограничении вредных выбросов

Лямбда-датчики были введены в 1977 году для повышения эффективности двигателей автомобилей. Устанавливаемые как в бензиновых, так и в дизельных транспортных средствах, они помогают снизить количество вредных выбросов, в первую очередь газов, таких как угарный газ, и загрязняющих веществ, производимых вашим автомобилем.

Датчики разработаны для работы в соответствии с государственным законодательством о выхлопных газах. Из-за роли, которую они играют в работе вашего автомобиля, они также широко известны как датчики кислорода или датчики кислорода .

Наука, лежащая в основе работы вашего лямбда-зонда

Соотношение воздух-топливо

Когда ваш автомобиль сжигает бензин или дизельное топливо, он смешивает его с воздухом, чтобы обеспечить наиболее эффективную работу вашего двигателя.

Это соотношение воздуха и топлива известно как стехиометрическое соотношение.Или, что гораздо проще, лямбда-отношение. Лямбда — это греческая буква, обозначаемая λ.

Работа на богатой смеси

Когда у вас богатое топливо, это означает, что в смеси не так много воздуха, как должно быть. С богатым топливом возникает избыток несгоревшего топлива. Несгоревшее топливо создает загрязнение, чего мы стараемся избегать.

Работа на обедненной смеси

Когда в топливной смеси слишком много воздуха, создается обедненная топливная смесь. Бедная топливная смесь имеет тенденцию производить больше загрязнителей оксида азота.Это также может привести к снижению производительности двигателя и возможному повреждению двигателя.

Как работает лямбда-зонд для корректировки топливной смеси?

В выхлопной системе вашего автомобиля должен быть хотя бы один датчик для измерения количества кислорода в выхлопных газах после сгорания топлива.

В современных автомобилях часто бывает 2 датчика. Первый — непосредственно после двигателя и перед каталитическим нейтрализатором. Второй размещается после каталитического нейтрализатора для контроля всей работы.Он также проверяет, правильно ли ваша кошка выполняет свою работу.

Ваш лямбда-зонд преобразует количество кислорода в выхлопных газах в электрический сигнал и отправляет сигнал в компьютер, который управляет работой вашего двигателя.

ECU (блок управления двигателем) обрабатывает показания и отправляет информацию обратно в двигатель. Затем двигатель делает компенсацию того, как смешивать топливо и воздух, чтобы вернуть соотношение туда, где оно должно быть.

Напряжение, создаваемое вашим датчиком, находится в пределах 0.1 В и 0,9 В. Показание 0,1 В соответствует обедненной топливной смеси, а показание 0,9 В — обедненной топливной смеси. Оптимальное напряжение для идеального микса — 0,45 В.

Как часто нужно менять лямбда-зонд?

Из-за характера их работы и их положения в очень жаркой и грязной среде ваш лямбда-зонд со временем изнашивается.

Несколько вещей могут повлиять на срок службы ваших датчиков, но обычно он должен длиться от 50 до 100 000 миль.

Ранние датчики не имели нагревательного элемента. Им требовалось, чтобы температура выхлопных газов достигла определенного значения для работы. Современные датчики оснащены нагревательным элементом, снимающим большое давление с датчика. Эти новые датчики имеют гораздо более длительный срок службы.

Ваш датчик необходимо периодически проверять, чтобы гарантировать его правильную работу.

Как определить, что ваш лямбда-зонд не работает должным образом

  • Производительность вашего двигателя будет ухудшаться — часто возникают перебои в работе, отключение или совсем не запускается
  • Когда ваш двигатель работает на холостом ходу или просто тикает, он будет ощущаться грубым и бугристая по сравнению с нормальной
  • Мощность двигателя низкая
  • Расход топлива выше нормы
  • Ваш автомобиль не прошел тест на выбросы
  • Контрольная лампа двигателя загорится на вашей приборной панели

Как проверить лямбда-зонд

Есть несколько способов проверить лямбда-зонд.

1. Проверка вашего лямбда-зонда с помощью тестера выхлопных газов

Быстрый и простой способ измерить производительность вашего лямбда-зонда — использовать анализатор выбросов четырех газов . Это выполняется так же, как и ваш тест на выбросы загрязняющих веществ. Значение лямбда рассчитывается исходя из изменения состава выхлопных газов в течение 60 секунд, чтобы убедиться, что поддерживаемое соотношение всегда работает на 1.

Проверка лямбда-зонда с помощью мультиметра

Вам следует использовать только высокоомный мультиметр с цифровым отображать.Мультиметр следует подключить параллельно сигнальной линии датчика и установить на 1 В или 2 В. При запуске двигателя должно появиться значение в пределах 0,4–0,6 В. Как только двигатель прогреется до температуры, показания должны меняться в пределах 0,1–0,9 В. Идеальная частота вращения двигателя для наилучших измерений должна быть 2500 об / мин.

Проверка лямбда-зонда с помощью осциллографа

Подключите осциллограф к сигнальной линии. Установите диапазон напряжения 1–5 В и настройку времени 1–2 секунды и снова запустите двигатель на 2500 об / мин.Высота амплитуды сигнала будет соответствовать вашему максимальному и минимальному напряжению (0,1–0,9 В), а время отклика и длительность периода будут отображать частоту (0,5–4 Гц).

Проверка вашего лямбда-зонда с помощью тестера лямбда-зонда

Вы можете купить прибор, предназначенный исключительно для измерения вашего лямбда-зонда. Как и в случае с осциллографом или мультиметром, подключите тестер к сигнальной линии, и когда вы достигнете правильной температуры, ваши показания будут отображаться с помощью светодиодной шкалы.

Всегда заменяйте датчик, аналогичный

Учитывая, что доступны сотни датчиков, вы можете спросить: «Какой лямбда-датчик мне нужен?»

Вы всегда должны сверяться с рекомендациями производителя, так как существуют разные типы датчиков и вам нужен правильный вариант для вашего ECU.

Когда дело доходит до замены датчика , вот несколько советов для чистой и правильной установки:

  • Тщательно очистите резьбу в выхлопе.
  • Наносите только прилагаемую и подходящую смазку на резьбу датчика. Не смазывайте носик датчика.
  • Затягивайте датчик только с предписанным крутящим моментом. Используйте динамометрический ключ с подходящей головкой лямбда-зонда. Избыточное затягивание опасно для любого датчика с нагревательным элементом, так как оно может треснуть внутреннюю керамику и привести к выходу датчика из строя.

Лямбда как инструмент диагностики

Расчет лямбда определяет соотношение между количеством кислорода, фактически присутствующим в камере сгорания, иколичество, которое должно было присутствовать для достижения идеального сгорания.

Давайте узнаем больше об этом замечательном инструменте, начиная со значения лямбды. Лямбда представляет собой отношение количества кислорода, фактически присутствующего в камере сгорания, к количеству, которое должно было присутствовать, чтобы получить «идеальное» сгорание. Таким образом, когда смесь содержит ровно столько кислорода, сколько требуется для сжигания имеющегося количества топлива, соотношение будет один к одному (Ll), а лямбда будет равна 1.00. Если смесь содержит слишком много кислорода для данного количества топлива (бедная смесь), лямбда будет больше 1,00. Если смесь содержит слишком мало кислорода для данного количества топлива (богатая смесь), лямбда будет меньше 1,00.

Широкополосный датчик генерирует переменный сигнал в отличие от простого сигнала богатой / обедненной смеси стандартного кислородного датчика. Поскольку сигнал различается по силе, а также по направлению (полярности) тока, невозможно напрямую просмотреть сигнал с помощью чего-либо, кроме осциллографа.Однако при наличии подходящего вспомогательного оборудования широкополосный датчик можно использовать для регулировки топливно-воздушной смеси на любом двигателе.

Все мы знаем, что для идеального сгорания требуется соотношение воздух / топливо примерно 14,7: 1 (по весу) при нормальных условиях. Таким образом, обедненное соотношение воздух / топливо, скажем, 16: 1, соответствует значению лямбда 1,088. (Для вычисления разделите 16 на 14,7.) Лямбда 0,97 будет означать соотношение воздух / топливо 14,259: 1 (полученное путем умножения 0,97 на 14,7).

Вот и волшебство: Лямбда полностью не изменяется при сгорании.Даже полное сгорание или полное отсутствие сгорания не влияет на лямбду! Это означает, что мы можем брать пробы выхлопных газов в любой точке потока выхлопных газов, не беспокоясь о влиянии каталитического нейтрализатора.

Что не так с этой машиной?

HC: 2882 ppm CO: 0,81%

CO2: 13,69% O2: 2,18%

Это механическая проблема? Проблема с зажиганием? Дисбаланс соотношения воздух / топливо? Что эти показания выбросов пытаются нам сказать? На первый взгляд может показаться, что высокое содержание углеводорода (HC) указывает на обилие доступного топлива, однако очень высокое значение содержания кислорода (O2) может заставить нас задуматься, не смотрим ли мы на обедненную смесь пропусков зажигания.Относительно низкий показатель оксида углерода (CO), кажется, исключает богатую смесь, в то время как показание диоксида углерода (CO2) может указывать либо на неработающий каталитический нейтрализатор, либо на проблему с механической эффективностью двигателя.

В этом случае лямбда указывает на существенно богатую смесь — прямо противоположное тому, что мы могли бы подумать, основываясь только на показаниях отдельных газов. В конце концов, CO, обычно индикатор богатого состояния, значительно ниже, чем Oz, который является контрольным показателем обедненного выхлопа.В сочетании с высокими показателями HC, большинство из нас, вероятно, сочло бы это состоянием обедненного пропуска зажигания.

Фактически, эти показания были сняты на Ford Escort с заземленным одним проводом вилки. Конвертеру дали ненадолго остыть (в надежде избежать раскаленного расплавления), но нагретый кислородный датчик быстро вернулся в замкнутый контур. Избыточное содержание O2 в выхлопном потоке из мертвого цилиндра заставило PCM в ответ подать команду на обогащенную смесь.

А как насчет этой машины?

HC: 834 частей на миллион CO:.01%

CO2: 13,78% O2: 2,29%

Показания газа дают расчетное значение 1,07 для лямбда. Это, очевидно, бедная смесь, в данном случае из-за ленивого кислородного датчика и плохого провода штекера на Volkswagen Jetta 86 года.

Попробуйте этот набор показаний.

HC: 330 ppm CO: 8,49%

CO2: 9,93% O2: 0,15%

Здесь лямбда была 0,77, что указывает на чрезвычайно богатую смесь. Это образцы выхлопной трубы автомобиля с неисправным (разомкнутым) датчиком температуры охлаждающей жидкости.

Что может нам сказать лямбда-анализ этих показаний выхлопной трубы?

HC: 72 ppm CO: 0,16%

CO2: 15,24% O2: 0,86%

Фактически, при значении лямбда 1,03 эта смесь бедная, хотя измерения на выхлопной трубе выглядят довольно приемлемыми.

Запуск лямбды в работу

На первый взгляд может показаться, что значение лямбды чрезвычайно ограничено. В конце концов, обычный газовый анализ может сказать нам, идет ли автомобиль на обедненной или обедненной смеси, верно? (Если вы все еще так думаете, вернитесь к нашему самому первому примеру, чтобы еще раз взглянуть!) И с OBD II, делающим показания корректировки топлива частью каждого потока данных, есть ли какая-то большая загадка относительно того, какая смесь идет в сгорание камера? Давайте рассмотрим каждый из этих вопросов.

Помните, что основная цель каталитического нейтрализатора — очистить чрезмерные выбросы углеводородов, оксида углерода и оксидов азота (NOx). Конвертер пытается превратить их все в углекислый газ и воду (h3O). Таким образом, хороший преобразователь может замаскировать небольшой дисбаланс смеси, будь то обедненная или богатая часть спектра. Когда каталитический нейтрализатор подвергается воздействию постоянно богатой или бедной смеси, он должен работать более интенсивно, и его срок службы может сократиться.

Будем ли мы видеть хроническое обогащение или обеднение выхлопных газов? Только если состояние тяжелое, или если смесь уже перегрузила катализатор.Lambda помогает здесь, позволяя нам видеть входящую смесь, чтобы мы могли определить, правильна ли она.

Каталитические преобразователи обычно работают эффективно только тогда, когда поступающая смесь находится в пределах примерно 4% от стехиометрии или в диапазоне лямбда от 0,96 до 1,04. Вернемся к нашему последнему примеру выше. При 1,03 лямбда находится в пределах допустимых пределов обедненной смеси. Но если это пограничное состояние обедненной смеси сохраняется в течение длительного периода времени, катализатор будет медленно разлагаться в результате чрезмерного тепла, которое он генерирует при очистке выхлопного потока.

Теперь рассмотрим случай автомобиля, оборудованного системой OBD II. Предположим, мы видим, что долгосрочная корректировка подачи топлива показывает добавление на 25% больше топлива, чем было изначально запрограммировано для наблюдаемых условий эксплуатации (LTFT = + 25%). И у нас есть непрерывный бережливый код. Очевидно, что многие причины могут вызвать это состояние, в том числе низкая подача топлива, неисправный датчик массового расхода воздуха (MAF), большая утечка вакуума и даже неисправный датчик кислорода. Может ли лямбда помочь нам сузить круг подозреваемых? Конечно, может.

Рассмотрим датчик O2.Предположим, что код датчика O2 отсутствует. Если лямбда практически равна 1,00, можно сразу исключить датчик O2 из рассмотрения. Лямбда будет правильной на этом уровне корректировки топлива только в том случае, если датчик O2, на котором основана корректировка топлива, работает правильно.

Можем ли мы еще больше сузить поле? Если лямбда остается практически равной 1,00 в условиях холостого хода, частичного открытия дроссельной заслонки и высокого крейсерского режима, но топливная коррекция увеличивается с нагрузкой, мы можем исключить утечку вакуума.Утечка вакуума представляет собой уменьшение процента поступающего воздушного заряда по мере увеличения частоты вращения двигателя и нагрузки. Таким образом, мы бы сосредоточились на проблеме с подачей топлива или неисправности массового расхода воздуха. Если, однако, мы обнаружим, что лямбда будет значительно меньше 1,00, мы немедленно заподозрим неисправность датчика O2 — возможно, короткое замыкание на массу.

Упражнения

Давайте применим то, что мы узнали о лямбде, к следующим примерам. В каждом случае постарайтесь увидеть, какие неисправности могут быть причиной данных. Ответы и анализ появляются после пяти примеров.

  1. Автомобиль OBD I с MAP и EGR показывает LTFT на уровне -15%, с переключением STFT в пределах ± 5%. Лямбда составляет 1,05, уровни NOx повышены, но все остальные выхлопные газы находятся в допустимых пределах. Автомобиль не прошел государственные испытания на выбросы выхлопных газов. Клапан рециркуляции ОГ получает разрежение в нужное время во время дорожных испытаний. Открытие клапана рециркуляции ОГ вручную при 2000 об / мин приводит к тому, что двигатель работает заметно грубо, без пропусков зажигания, характерных для конкретного цилиндра.
  2. Грузовик OBD II с MAF показывает лямбду на.96 на холостом ходу и 1,03 на крейсерском. Общая корректировка подачи топлива (LTFT

+ STFT) на холостом ходу составляет -12%, а общая корректировка подачи топлива на крейсерском режиме составляет + 9%. Жалоба клиента — неуверенность в ускорении. Подача топлива в норме. Временное отключение EGR не дает никаких улучшений. Предыдущий магазин очистил коды, и все мониторы не укомплектованы.

  1. Автомобиль OBD II с MAP и EGR работает немного неровно на холостом ходу с несколько повышенными показателями IAC. Лямбда — 0,99. В крейсерском режиме шероховатость исчезает, и лямбда увеличивается до 1.00. Подсчет МАК на крейсерском рейсе уместен.
  2. Несмотря на то, что он имеет значение лямбда 0,99, грузовик с MAF показывает неприемлемо завышенные показания выхлопной трубы HC и CO, снятые в условиях холостого хода с нагрузкой сразу после продолжительного круиза по шоссе.

Анализ и ответы

  1. Клапан рециркуляции ОГ работает правильно, но, как показывает высокое значение лямбда, этот автомобиль работает на обедненной смеси. PCM вычитает топливо (отрицательное значение LTFT), но только до определенной точки (переключение STFT). Неисправность должна быть в датчике U2.Он смещен положительно, возможно, из-за частичного короткого замыкания между линией датчика и питанием нагревателя. Каталитический нейтрализатор все еще в порядке? Если показания NOx меньше, чем вдвое превышают предел, и если условия еще не повредили слой NOx, преобразователь может быть в состоянии адекватно компенсировать, как только он начнет получать правильную исходную смесь. Тем не менее, покупателя следует предупредить, что после замены датчика O2 потребуются дальнейшие испытания для оценки состояния преобразователя.
    1. Что заставляет этот автомобиль работать на холостом ходу на холостом ходу, а на круизе — наклоняться? Мы знаем, что проблем с подачей топлива нет, и мы устранили систему рециркуляции отработавших газов.Проблема, скорее всего, не в грязных форсунках, поскольку реакция корректировки топливоподачи не согласуется между диапазонами скорости и нагрузки. Это не может быть утечка вакуума, так как реакция корректировки топливоподачи противоположна ожидаемой.
    2. Этот грузовик имеет загрязненный MAF. MAF переоценивает воздушный поток на холостом ходу и занижает его на круизе, двойной удар! Разные производители разработали разные стратегии взвешивания данных после очистки кода. Некоторые могут по умолчанию использовать максимальную добавку топлива до + 25%, в то время как другие могут вернуться к нулевой коррекции; даже метод, используемый для очистки кодов, например, KOER vs.KOEO — может изменить полученную стратегию повторного обучения. В этом случае числа корректировки топлива — это недавно очищенный ответ PCM на исправный датчик O2. Но, поскольку мониторы O2 неполные, PCM еще недостаточно доверяет им, чтобы достичь правильного значения корректировки топлива.
  2. Подсчет IAC является важным ключом к разгадке. В сочетании с показаниями лямбда они указывают на то, что двигатель компенсирует низкие обороты холостого хода, вызванные небольшой утечкой вакуума. Наиболее вероятный виновник — утечка системы рециркуляции отработавших газов. (Лямбда показывает богатую реакцию на пониженное абсолютное давление в коллекторе.Нормальная вакуумная утечка наружного воздуха приведет к более низким показателям IAC, а не к более высоким.)
  3. Смесь находится в пределах 1% стехиометрии. В предыдущем круизе преобразователь должен был нагреться до температуры. Что осталось, кроме плохого преобразователя?

The Critical Link

Современные системы управления подачей топлива обычно работают в диапазоне λ = 1 ± 0,01 в установившихся условиях. Но точно так же, как вам пришлось потратить время на сбор библиотеки заведомо хороших сигналов, прежде чем вы действительно сможете извлечь выгоду из использования осциллографа, вам нужно потратить некоторое время на тестирование заведомо хороших автомобилей в различных повторяемых и диагностически значимых условиях вождения. чтобы получить истинную пользу от лямбда-анализа.

Некоторые Хонды, оборудованные датчиками бедной смеси воздуха / топлива, например, обычно работают на чрезвычайно бедных лямбда-диапазонах, превышающих 1,63 в условиях круиза по шоссе. Настройщикам может потребоваться знать, что максимальная мощность обычно достигается при значении лямбда приблизительно 0,85 в условиях полной нагрузки. Разработка библиотеки заведомо хороших лямбда-значений станет еще более важной с появлением систем прямого впрыска бензина (GDI). Поскольку системы GDI используют стратифицированный заряд и переменную синхронизацию впрыска (а также более привычную переменную продолжительность впрыска), нормальные значения лямбда для этих систем могут приближаться к 2.0 при некоторых условиях. Поскольку широкодиапазонные датчики воздуха / топлива (WRAF) становятся все более распространенными, ожидайте, что значения лямбда будут принимать еще более широкий диапазон.

Заключение

Несмотря на то, что пропуски зажигания могут сочетаться с нормальной работой обратной связи (замкнутым контуром) для создания неожиданно богатого состояния, лямбда-анализ остается мощным диагностическим инструментом. Регулярное использование лямбда может быстро сузить вашу диагностику для многих жалоб на управляемость, решая проблемы со смесью в течение нескольких минут.Лямбда-анализ может быстрее, чем другие методы, выявить неисправности кислородного датчика, такие как смещение датчиков. Лямбда-анализ в сочетании с анализом корректировки топливоподачи часто позволяет быстро выявить загрязненные или неисправные датчики массового расхода воздуха. А лямбда-анализ в сочетании с обычными показаниями выхлопных газов может окончательно выявить неисправные каталитические нейтрализаторы за считанные секунды.

ДАТЧИКИ КИСЛОРОДА / ДАТЧИК ЛЯМБДА /: ДЕТАЛИ, ВИДЫ, РАБОТАЮЩИЕ

ЧТО ТАКОЕ КИСЛОРОДНЫЙ ДАТЧИК?

Датчик кислорода (обычно называемый «датчиком O2», поскольку O2 — это химическая формула кислорода) установлен в выпускном коллекторе транспортного средства для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигатель.

ЧТО ДЕЛАЕТ КИСЛОРОДНЫЙ ДАТЧИК?

Датчики кислорода работают, вырабатывая собственное напряжение при нагревании (примерно 600 ° F). На наконечнике датчика кислорода, который подключается к выпускному коллектору, находится циркониевая керамическая колба. Внутренняя и внешняя части колбы покрыты пористым слоем платины, которая служит электродами. Внутренняя часть колбы вентилируется изнутри через корпус датчика во внешнюю атмосферу. Когда внешняя часть баллона подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между баллоном и внешней атмосферой внутри датчика вызывает прохождение напряжения через баллон.Если соотношение топлива бедное (недостаточно топлива в смеси), напряжение относительно низкое — примерно 0,1 вольт. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое — примерно 0,9 вольт. Когда топливно-воздушная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольт.

ГДЕ НАХОДЯТСЯ ДАТЧИКИ КИСЛОРОДА?

Количество кислородных датчиков в автомобиле различается. Каждый автомобиль, выпущенный после 1996 года, должен иметь кислородный датчик перед каждым каталитическим нейтрализатором и после него.Таким образом, в то время как большинство транспортных средств имеют два датчика кислорода, двигатели V6 и V8, оснащенные двойным выхлопом, имеют четыре датчика кислорода — один перед каталитическим нейтрализатором и за ним на каждом ряду двигателя.

1. Верхний кислородный датчик (кислородный датчик 1)

Кислородный датчик 1 является верхним кислородным датчиком по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо в выхлопе, выходящем из выпускного коллектора, и отправляет сигналы высокого и низкого напряжения в модуль управления трансмиссией для регулирования топливовоздушной смеси.Когда модуль управления трансмиссией получает сигнал низкого напряжения (обедненной смеси), он компенсирует это за счет увеличения количества топлива в смеси. Когда модуль управления трансмиссией получает сигнал высокого напряжения (богатый), он обедняет смесь, уменьшая количество топлива, которое он добавляет в смесь. Использование модулем управления трансмиссией входного сигнала кислородного датчика для регулирования топливной смеси известно как замкнутый контур управления с обратной связью. Эта работа с замкнутым контуром приводит к постоянному переключению между богатой и бедной смесью, что позволяет каталитическому нейтрализатору минимизировать выбросы за счет поддержания надлежащего баланса общего среднего соотношения топливной смеси.Однако при запуске холодного двигателя или выходе из строя датчика кислорода модуль управления трансмиссией переходит в режим разомкнутого контура. В режиме разомкнутого контура модуль управления трансмиссией не получает сигнал от кислородного датчика и заказывает фиксированную богатую топливную смесь. Работа без обратной связи приводит к увеличению расхода топлива и выбросов. Многие новые кислородные датчики содержат нагревательные элементы, которые помогают им быстро достичь рабочей температуры, чтобы минимизировать время, затрачиваемое на работу без обратной связи.

2. Нижний датчик кислорода (датчик кислорода 2)

Датчик кислорода 2 является нижним датчиком кислорода по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо на выходе из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает должным образом. Каталитический нейтрализатор поддерживает стехиометрическое соотношение воздух-топливо 14,7: 1, в то время как модуль управления трансмиссией постоянно переключается между богатой и обедненной воздушно-топливной смесью из-за входного сигнала от верхнего кислородного датчика (датчик 1).Следовательно, нижний кислородный датчик (датчик 2) должен выдавать стабильное напряжение примерно 0,45 В.

КАК РАБОТАЮТ ДАТЧИКИ КИСЛОРОДА

Пошаговое руководство по работе автомобильного кислородного датчика. Эта статья относится к большинству транспортных средств.

Шаг 1. Датчик кислорода — это электронный компонент, который разработан для измерения уровня кислорода в выхлопной системе автомобильного двигателя.

Шаг 2 — Обычно датчик кислорода устанавливается на трубу выхлопной системы или на стороне каталитического нейтрализатора, при этом датчик находится внутри трубы.Он измеряет кислородную смесь, генерируя небольшое количество электричества из-за разницы в атмосфере, кислороде и углекислом газе. Компьютер PCM контролирует это напряжение и соответствующим образом регулирует подачу топлива. Датчики кислорода обычно можно найти в выхлопной трубе рядом с двигателем (первичный датчик), хотя иногда они устанавливаются в самом выпускном коллекторе, где соединяется выхлопная труба. Датчики, расположенные после каталитического нейтрализатора или на нем, являются вторичным блоком.

Шаг 3 — Работа датчика заключается в измерении количества кислорода, необходимого для сжигания любого топлива, остающегося в потоке выхлопных газов, и передачи этой информации обратно в компьютерный PCM (модуль управления трансмиссией), где она сравнивается с другой оперативной информацией для корректировки. можно сделать так, чтобы максимизировать топливную эффективность и мощность за счет правильной топливовоздушной смеси и момента зажигания в двигателе.Датчики кислорода делают это за счет химической реакции внутри самого датчика; В этой статье мы объясним эволюцию и применение этой очень важной части головоломки с впрыском топлива. Датчики кислорода работают за счет химической реакции. Сердечник или элемент датчика — циркониевая керамика с тонким слоем платины. Поскольку эти материалы являются химически активными и наносятся слоями, они со временем изнашиваются, снижая их эффективность.

Шаг 4 — Напряжение, создаваемое датчиком, затем передается на компьютер, где он сравнивает его с другой оперативной информацией, чтобы внести необходимые корректировки смеси и времени.Датчик кислорода постоянно связан с блоком управления двигателем, предоставляя ему информацию, необходимую для регулировки подачи топлива для оптимального сгорания.

Шаг 5 — Когда двигатель холодный, кислородный датчик показывает медленно, нагревательный элемент был установлен, чтобы решить эту проблему и помочь датчику работать правильно, пока двигатель не достигнет рабочей температуры. Когда эти нагреватели выходят из строя, загорается лампа проверки двигателя. Количество вторичных датчиков будет зависеть от количества каталитических нейтрализаторов в автомобиле.Датчики кислорода используют чередование богатых и бедных смесей для достижения баланса, близкого к стехиометрическому (идеально для внутреннего сгорания).

ЗОНД

Чувствительный элемент представляет собой керамический цилиндр, покрытый внутри и снаружи пористыми платиновыми электродами; вся сборка защищена металлической сеткой. Он работает, измеряя разницу в кислороде между выхлопными газами и наружным воздухом, и генерирует напряжение или изменяет его сопротивление в зависимости от разницы между ними.

Датчики работают эффективно только при нагревании до приблизительно 316 ° C (600 ° F), поэтому большинство новых лямбда-зондов имеют нагревательные элементы, заключенные в керамику, которые быстро нагревают керамический наконечник до температуры. Более старые датчики без нагревательных элементов в конечном итоге будут нагреваться выхлопными газами, но между запуском двигателя и достижением теплового равновесия компонентов выхлопной системы существует определенная временная задержка. Время, необходимое для того, чтобы выхлопные газы довели датчик до температуры, зависит от температуры окружающего воздуха и геометрии выхлопной системы.Без нагревателя процесс может занять несколько минут. Есть проблемы с загрязнением, которые приписываются этому медленному процессу запуска, в том числе аналогичная проблема с рабочей температурой каталитического нейтрализатора.

К зонду обычно прикрепляют четыре провода:
1. два для выхода лямбда и
2. два для питания нагревателя,

, хотя некоторые автопроизводители используют металл в качестве заземления для сигнала сенсорного элемента, что приводит к три провода. Ранее датчики без электрического нагрева имели один или два провода.

ТИПЫ КИСЛОРОДНЫХ ДАТЧИКОВ

1. Циркониевый датчик

Лямбда-датчик из диоксида циркония или диоксида циркония основан на твердотельном электрохимическом топливном элементе, называемом ячейкой Нернста. Его два электрода обеспечивают выходное напряжение, соответствующее количеству кислорода в выхлопных газах по отношению к количеству кислорода в атмосфере.

Выходное напряжение 0,2 В (200 мВ) постоянного тока представляет «бедную смесь» топлива и кислорода, где количество кислорода, поступающего в цилиндр, достаточно для полного окисления монооксида углерода (CO), образующегося при сжигании воздуха и топливо, в диоксид углерода (CO2).Выходное напряжение 0,8 В (800 мВ) постоянного тока представляет собой «богатую смесь», в которой много несгоревшего топлива и мало остаточного кислорода. Идеальная уставка составляет приблизительно 0,45 В (450 мВ) постоянного тока. Здесь количество воздуха и топлива находится в оптимальном соотношении, которое составляет ~ 0,5% обедненной смеси от стехиометрической точки, так что выхлопные газы содержат минимальное количество окиси углерода.

Напряжение, создаваемое датчиком, нелинейно по отношению к концентрации кислорода. Датчик наиболее чувствителен вблизи стехиометрической точки (где λ = 1) и менее чувствителен при очень бедной или очень богатой смеси.
ЭБУ — это система управления, которая использует обратную связь от датчика для регулировки топливно-воздушной смеси. Как и во всех системах управления, важна постоянная времени датчика; способность ЭБУ управлять соотношением топливо-воздух зависит от времени отклика датчика. Датчик старения или загрязнения имеет тенденцию к более медленному времени отклика, что может снизить производительность системы. Чем короче период времени, тем выше так называемый «перекрестный счет» и тем быстрее реагирует система.

Датчик имеет прочную конструкцию из нержавеющей стали внутри и снаружи.Благодаря этому датчик обладает высокой устойчивостью к коррозии, что позволяет эффективно использовать его в агрессивных средах с высокой температурой / давлением.
Датчик из диоксида циркония относится к «узкополосному» типу, имея в виду узкий диапазон соотношения топливо / воздух, на который он реагирует.

2. Широкополосный циркониевый датчик

Вариант циркониевого датчика, названный «широкополосным» датчиком, был представлен NTK в 1992 году и широко используется в системах управления двигателем автомобилей, чтобы удовлетворить постоянно растущие требования к лучшему. экономия топлива, более низкие выбросы и в то же время лучшая производительность двигателя.Он основан на плоском элементе из диоксида циркония, но также включает электрохимический газовый насос. Электронная схема, содержащая контур обратной связи, управляет током газового насоса, чтобы поддерживать постоянную мощность электрохимической ячейки, так что ток насоса напрямую указывает на содержание кислорода в выхлопных газах. Этот датчик исключает циклическую смену обедненной и богатой смеси, присущую узкополосным датчикам, позволяя блоку управления гораздо быстрее регулировать подачу топлива и угол зажигания двигателя. В автомобильной промышленности этот датчик также называют датчиком UEGO (универсальный датчик кислорода в выхлопных газах).Датчики UEGO также широко используются при настройке динамометрических стендов на вторичном рынке и в высокопроизводительном оборудовании для отображения воздуха и топлива водителя. Широкополосный циркониевый датчик используется в системах многослойного впрыска топлива, а теперь может также использоваться в дизельных двигателях, чтобы соответствовать предстоящим ограничениям выбросов EURO и ULEV.

Широкополосные датчики состоят из трех элементов:
1. ионно-кислородный насос,
2. узкополосный циркониевый датчик,
3. нагревательный элемент.

Схема подключения широкополосного датчика обычно состоит из шести проводов:
1.резистивный нагревательный элемент,
2. резистивный нагревательный элемент,
3. датчик,
4. насос,
5. калибровочный резистор,
6. общий.

3. Датчик диоксида титана

Менее распространенный тип узкополосных лямбда-зондов имеет керамический элемент из титана (диоксида титана). Этот тип не генерирует собственное напряжение, но изменяет свое электрическое сопротивление в зависимости от концентрации кислорода. Сопротивление титана зависит от парциального давления кислорода и температуры.Поэтому некоторые датчики используются с датчиком температуры газа для компенсации изменения сопротивления из-за температуры. Значение сопротивления при любой температуре составляет примерно 1/1000 от изменения концентрации кислорода. К счастью, при λ = 1 происходит большое изменение кислорода, поэтому изменение сопротивления обычно в 1000 раз между богатым и бедным, в зависимости от температуры.

Поскольку диоксид титана является полупроводником N-типа со структурой TiO2-x, x-дефекты в кристаллической решетке проводят заряд.Так, для выхлопа с высоким содержанием топлива (более низкая концентрация кислорода) сопротивление низкое, а для выхлопа с обедненным топливом (более высокая концентрация кислорода) сопротивление высокое. Блок управления питает датчик небольшим электрическим током и измеряет результирующее падение напряжения на датчике, которое варьируется от почти 0 вольт до примерно 5 вольт. Подобно датчику из диоксида циркония, этот тип является нелинейным, поэтому его иногда упрощенно называют двоичным индикатором, показывающим либо «богатый», либо «обедненный». Датчики из диоксида титана дороже, чем датчики из диоксида циркония, но они также быстрее реагируют.

В автомобильной промышленности датчик из титана, в отличие от датчика из диоксида циркония, для правильной работы не требует эталонного образца атмосферного воздуха. Это упрощает проектирование узла датчика против загрязнения водой. В то время как большинство автомобильных датчиков являются погружными, датчики на основе диоксида циркония требуют очень небольшого поступления эталонного воздуха из атмосферы. Теоретически жгут проводов датчика и разъем заделаны. Предполагается, что воздух, который просачивается через жгут проводов к датчику, исходит из открытого места в жгуте — обычно ЭБУ, который расположен в замкнутом пространстве, таком как багажник или салон автомобиля.

Подписка на обновления Отказаться от обновлений

Датчики кислорода: подробное руководство о том, как работают датчики кислорода и что они делают

Время чтения: 5 минут

[vc_row] [vc_column] [vc_column_text]

Что такое датчик кислорода?

Датчик кислорода (обычно называемый «датчиком O2», поскольку O2 — это химическая формула кислорода) установлен в выпускном коллекторе транспортного средства для отслеживания количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя.

Контролируя уровни кислорода и отправляя эту информацию на компьютер вашего двигателя, эти датчики сообщают вашему автомобилю, является ли топливная смесь богатой (недостаточно кислорода) или бедной (слишком много кислорода). Правильное соотношение воздух-топливо имеет решающее значение для поддержания плавности хода вашего автомобиля.

Поскольку датчик O2 играет важную роль в работе двигателя, выбросах и топливной экономичности, важно понимать, как они работают, и следить за тем, чтобы ваш датчик работал должным образом.

Где расположены датчики кислорода?

Количество кислородных датчиков в автомобиле варьируется.Каждый автомобиль, выпущенный после 1996 года, должен иметь кислородный датчик перед и после каждого каталитического нейтрализатора. Таким образом, в то время как большинство транспортных средств имеют два датчика кислорода, двигатели V6 и V8, оснащенные двойным выхлопом, имеют четыре датчика кислорода — один перед каталитическим нейтрализатором и за ним на каждом ряду двигателя.

Для чего нужен датчик кислорода?

Автомобильный датчик 02 используется для измерения количества кислорода в выхлопных газах и передачи этой обратной связи на компьютер вашего автомобиля.Затем компьютер использует эту информацию для корректировки воздушно-топливной смеси.

Датчики кислорода работают, вырабатывая собственное напряжение при нагревании (примерно 600 ° F). На наконечнике датчика кислорода, который подключается к выпускному коллектору, находится циркониевая керамическая колба. Внутренняя и внешняя части колбы покрыты пористым слоем платины, которая служит электродами. Внутренняя часть колбы вентилируется изнутри через корпус датчика во внешнюю атмосферу.

Когда внешняя часть баллона подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между баллоном и внешней атмосферой внутри датчика вызывает прохождение напряжения через баллон.

Если соотношение топлива бедное (недостаточно топлива в смеси), напряжение относительно низкое — примерно 0,1 вольт. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое — примерно 0,9 вольт. Когда топливно-воздушная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольт.

Верхний кислородный датчик (датчик кислорода 1)

Датчик кислорода 1 — это датчик кислорода перед каталитическим нейтрализатором.Он измеряет соотношение воздух-топливо в выхлопе, выходящем из выпускного коллектора, и отправляет сигналы высокого и низкого напряжения в модуль управления трансмиссией для регулирования топливовоздушной смеси. Когда модуль управления трансмиссией получает сигнал низкого напряжения (обедненной смеси), он компенсирует это за счет увеличения количества топлива в смеси. Когда модуль управления трансмиссией получает сигнал высокого напряжения (богатый), он обедняет смесь, уменьшая количество топлива, которое он добавляет в смесь.

Использование модулем управления трансмиссией входного сигнала кислородного датчика для регулирования топливной смеси известно как замкнутый контур управления с обратной связью.Эта работа с замкнутым контуром приводит к постоянному переключению между богатой и обедненной смесью, что позволяет каталитическому нейтрализатору минимизировать выбросы за счет поддержания надлежащего баланса общего среднего соотношения топливной смеси.

Однако при запуске холодного двигателя или выходе из строя датчика кислорода модуль управления трансмиссией переходит в режим разомкнутого контура. В режиме разомкнутого контура модуль управления трансмиссией не получает сигнал от кислородного датчика и заказывает фиксированную богатую топливную смесь.Работа в разомкнутом контуре приводит к увеличению расхода топлива и выбросов. Многие новые кислородные датчики содержат нагревательные элементы, которые помогают им быстро достичь рабочей температуры, чтобы свести к минимуму время, затрачиваемое на работу без обратной связи.

Нижний кислородный датчик (датчик кислорода 2)

Датчик кислорода 2 является нижним датчиком кислорода по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо на выходе из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает должным образом.Каталитический нейтрализатор поддерживает стехиометрическое соотношение воздух-топливо 14,7: 1, в то время как модуль управления трансмиссией постоянно переключается между богатой и обедненной воздушно-топливной смесью из-за входного сигнала от верхнего кислородного датчика (датчик 1). Следовательно, нижний кислородный датчик (датчик 2) должен выдавать стабильное напряжение примерно 0,45 В.

Признаки неисправного датчика O2

При выходе из строя датчика 02 могут появиться различные диагностические коды неисправностей (DTC).В большинстве случаев неисправный датчик O2 приводит к включению светового индикатора двигателя, сопровождаемого кодом неисправности, который вы можете прочитать с помощью сканера OBD2, такого как FIXD. Основываясь на этом коде неисправности, он укажет на причину сбоя, а затем продолжит диагностику.

Симптомы неисправного датчика O2 могут включать следующее:

  • На обедненной или богатой смеси
  • Плохое ускорение
  • Двигатель колеблется
  • Черный дым из выхлопной трубы (богатое рабочее состояние) Черный дым — избыточное топливо, выходящее из выхлопной трубы
  • Неровный холостой ход
  • Автомобиль выходит из строя
  • Пониженная топливная экономичность

Чтобы определить, неисправен ли у вас датчик кислорода vs.в обедненных или богатых режимах работы первым делом необходимо проверить работу датчика O2 с помощью диагностического прибора.

Как проверить датчики кислорода

Поскольку датчик O2 играет важную роль в поддержании максимально эффективной и чистой работы вашего двигателя, важно убедиться, что он работает должным образом. Большинство кислородных датчиков обычно служат от 30 000 до 50 000 миль, или 3-5 лет, а более новые датчики служат еще дольше при надлежащем техническом обслуживании и уходе.

Вы можете проверить кислородный датчик дома с помощью вольтметра или диагностического прибора OBD2, такого как датчик FIXD.Перейдите к потоку данных в реальном времени в приложении FIXD, чтобы увидеть напряжение и время отклика ваших датчиков O2.

Как правило, передний (передний) датчик O2 1, который функционирует должным образом, будет переключаться с богатой на обедненную смесь с довольно устойчивой скоростью, создавая волнообразное образование. Напряжение, генерируемое датчиком O2, должно быть от 0,1 В до 0,9 В, с 0,9 В на богатой стороне и 0,1 В на бедной стороне. Если ваши показания находятся в этом диапазоне, датчик O2 работает нормально.

Задний (нижний) кислородный датчик 2 является датчиком каталитического нейтрализатора, и если все работает нормально, этот датчик будет колебаться около половины вольта.Однако это измерение может варьироваться в зависимости от производителя.

Дополнительные советы по проверке датчика O2

Если датчик O2 не реагирует быстро на тестирование:

Если во время тестирования датчик кажется вялым или медленно реагирует, и есть другие симптомы без кода неисправности, это может быть проблема «ленивого» датчика O2, который может вызвать другие проблемы.

Если напряжение датчика O2 остается высоким или бедным:

Попробуйте ввести противоположное условие, чтобы определить, связана ли проблема с датчиком кислорода или с топливовоздушной смесью.Например, если ваш датчик O2 заедает бедной смесью, добавьте топлива в ситуацию, чтобы увидеть, сработает ли он. Если датчик O2 находится на стороне богатой смеси, попробуйте создать утечку вакуума или увеличить количество кислорода, чтобы посмотреть, как и реагирует ли датчик.

Будьте в курсе с приложением FIXD Sensor & App

С автомобильным сканером и приложением FIXD вы можете взять под свой контроль уход за автомобилем и сэкономить 1000 долларов. От автоматических предупреждений о техническом обслуживании, отправляемых прямо на ваш телефон, до данных в реальном времени, показывающих уровень топлива, уровни датчика кислорода, напряжение батареи и многое другое, FIXD информирует вас, чтобы вы могли продлить срок службы вашего автомобиля и избежать ненужных дополнительных продаж.Узнайте больше о сканере и приложении FIXD OBD2 сегодня!

[/ vc_column_text] [/ vc_column] [/ vc_row]

Жена, мама, контент-менеджер и старший копирайтер в FIXD. От гаража до спортзала, я люблю помогать людям учиться и расти. Автомобиль мечты: ‘69 Acapulco Blue Mustang.

Лямбда-зонд — до и после

Дополнительные указания

Лямбда-зонд также называется датчиком кислорода или O 2 или датчиком кислорода в выхлопных газах с подогревом (HEGO) и играет очень важную роль в контроле выбросов выхлопных газов на автомобиле с каталитическим нейтрализатором.Датчик Pre-Cat устанавливается в выхлопную трубу перед каталитическим нейтрализатором, а автомобили, использующие новый EOBD2, также имеют лямбда-датчик post-cat.

Датчики имеют различное количество электрических соединений, максимум до четырех проводов. Они реагируют на содержание кислорода в выхлопной системе и вырабатывают небольшое напряжение в зависимости от воздушно-топливной смеси, наблюдаемой в данный момент. Диапазон напряжения в большинстве случаев колеблется от 0,2 до 0,8 вольт: 0,2 вольта указывает на бедную смесь и 0.8 В показывает более богатую смесь.

Транспортное средство, оснащенное лямбда-датчиком, называется «замкнутым контуром», что означает, что после сгорания топлива в процессе сгорания датчик анализирует полученные выбросы и соответствующим образом корректирует заправку двигателя.

Лямбда-датчики могут иметь нагревательный элемент, который нагревает датчик до оптимальной рабочей температуры 600 ° C. Это позволяет расположить датчик дальше от источника тепла в коллекторе в более «чистое» место.Датчик не работает при температуре ниже 300 ° C.

Лямбда-зонд состоит из двух пористых платиновых электродов. Наружная поверхность электрода подвергается воздействию выхлопных газов и покрыта пористой керамикой, а внутренняя поверхность с покрытием подвергается воздействию свежего воздуха.

Наиболее часто используемый датчик имеет элемент из диоксида циркония, вырабатывающий напряжение, когда существует разница в содержании кислорода между двумя электродами. Затем этот сигнал отправляется в электронный блок управления (ЕСМ), и смесь регулируется соответствующим образом.

Titania также используется в производстве другого типа лямбда-зонда, который обеспечивает более быстрое время переключения, чем более распространенный циркониевый датчик. Датчик кислорода из титана отличается от датчика из оксида циркония тем, что он не может генерировать собственное выходное напряжение и, следовательно, зависит от 5-вольтового источника питания от блока управления двигателем автомобиля. Опорное напряжение изменяется в соответствии с соотношением воздух-топливо в двигателе, при этом обедненная смесь возвращается всего лишь 0,4 В, а богатая смесь образует около 4.0 вольт.

Контроллер ЭСУД будет управлять подачей топлива в «замкнутом контуре» только тогда, когда позволяют соответствующие условия, что обычно происходит при работе на холостом ходу, малой нагрузке и крейсерском режиме. Когда автомобиль ускоряется, ECM допускает переполнение и игнорирует лямбда-сигналы. Это также происходит во время первоначального разогрева.

Датчики из диоксида титана и циркония при правильной работе переключаются примерно раз в секунду (1 Гц) и оба начинают переключаться только после достижения нормальной рабочей температуры.Это переключение можно наблюдать на осциллографе или с помощью напряжения низкого диапазона на мультиметре. На осциллографе результирующая форма сигнала должна выглядеть, как на рисунке выше. Если частота переключения ниже ожидаемой, снятие датчика и очистка его спреем растворителя может улучшить время отклика.

Постоянное высоковольтное выходное напряжение диоксида циркония показывает, что двигатель постоянно работает на богатой смеси и находится за пределами диапазона регулировки контроллера ЭСУД; тогда как низкое напряжение указывает на обедненную или слабую смесь.

Коммутационное напряжение на датчике после каталитического нейтрализатора указывает на то, что газы проходят через керамический монолит каталитического нейтрализатора, не подвергаясь химическим изменениям, и, следовательно, каталитический нейтрализатор требует замены заведомо исправным устройством, при условии, что форма волны перед каталитическим нейтрализатором находится в пределах спецификации .

Типичный циркониевый лямбда-зонд имеет четыре провода. Цвета у разных производителей различаются, но наиболее распространенное расположение показано ниже.

Верхний провод: белый нагреватель (+)
2-й провод: белый нагреватель (-)
3-й провод: черный — сигнал
4-й провод: серый — земля

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Top