Виды самоблокирующихся дифференциалов. Самоблокирующийся дифференциал принцип работы


Блокировка дифференциала: самоблок | Водитель авто

Конструкция и принцип работы трансмиссий современных автомобилей могут кардинально различаться между собой, тем не менее, ни одна из них не обходится без дифференциала. Он представляет собой часть главной передачи, предназначенную для разделения крутящего момента на две независимые ветви, на которых мощность и угловая скорость вращения могут варьироваться относительно друг друга.

Это позволяет компенсировать разницу расстояний, проходимых ведущими колесами автомобиля на поворотах, а значит – повысить управляемость, предотвратить пробуксовывание колес и ускоренный износ шин. Однако в классической механической конструкции дифференциала проявился ряд существенных недостатков, которые привели к разработке блокирующихся конструкций. Попробуем разобраться, для чего это нужно и как работает.

Предпосылки создания блокирующихся дифференциалов

Главной проблемой механического дифференциала, особенно опасной в случае тяжелых дорожных условий, стала возможность потери сцепления одним из ведущих колес. В таком случае происходит полное перераспределение мощности к вывешенному колесу, которое начинает свободно вращаться, а на сцепленное с поверхностью колесо поступает незначительный крутящий момент или не поступает вовсе. Чтобы бороться с этим, на первых раллийных автомобилях иногда просто заваривали дифференциал, исключая его из кинетической схемы трансмиссии. Позже появились комбинированные устройства, позволяющие временно отключать дифференциал по команде водителя – они получили название дифференциалов с ручной блокировкой.

Самоблокирующийся дифференциал

Революционным шагом в развитии автомобилестроения стало появление самоблокирующихся дифференциалов. В силу своих конструктивных особенностей они способны в автономном режиме изменять характер своего действия. Исходной информацией для этого могут служить:

  1. Величина крутящего момента – задает условия работы устройств типа Quaife и Torsen.
  2. Разница угловых скоростей на ведомых шестернях – используется в дисковых и кулачковых системах, дифференциалах с вискомуфтой.

Все эти конструкции широко применяются в автомобилях самых различных типов и классов, от спорткаров до тяжелых внедорожников. Рассмотрим подробнее устройство и принцип работы самоблокирующихся дифференциалов.

Quaife

Система Quaife, разработанная в 1965 году, больше всего напоминает классическую схему. Главное отличие – использование косозубых шестерен вместо прямозубых. Результатом такого новшества стало возникновение вспомогательных сил, стремящихся раздвинуть зацепленные шестерни, отдалить их друг от друга. Получившие подвижность пары сцепленных друг с другом сателитов во время изменения крутящего момента на одном из колес расходятся, упираются торцевыми поверхностями в корпус дифференциала, в результате чего притормаживаются и выравнивают режим работы механизма.

Это она из самых простых конструкций, и именно поэтому ей свойственен ряд недостатков – быстрый механический износ, сопровождающийся падением эффективности, невозможность качественной реализации в заднеприводных и внедорожных автомобилях. Чаще всего Quaife встречается на легких переднеприводных спорткарах начального уровня.

Дифференциал типа Quaife

Torsen

Система Torsen основана на червячной передаче и отличается высокой эффективностью. На сегодняшний день она объединяет три основных типа конструкций самоблокирующегося дифференциала, чувствительного к крутящему моменту:

  1. Тип-1 предполагает использование шестерен полуосей и сателитов в качестве червячных пар. Дифференциал типа TorsenПринцип его действия напоминает принцип действия системы Quaife – изменение момента сопровождается расклиниванием одной червяной пары и ее торможением о корпус дифференциала, а рабочий диапазон задается углом наклона зубьев червяка. Тип-1 является одним из самых мощных не только в серии, но и среди всех самоблокирующихся конструкций.
  2. Тип-2 использует сателиты, оси которых параллельны полуосям автомобиля. Принцип блокировки основан на торможении сателитов о специальные чашки, расположенные в корпусе дифференциала.
  3. Тип-3 включает все планетарные конструкции с червячными парами. Главное их достоинство – малые габариты, высокая эффективность, нетребовательность к условиям работы.

Теперь рассмотрим системы, принцип действия которых основан на разнице угловых скоростей ведомых шестерен дифференциала.

Дисковая блокировка

Конструкция дискового дифференциала предполагает наличие фрикционных муфт, принцип действия которых напоминает работу сцепления автомобиля. Часть дисков, входящих во фрикционные муфты, закреплена на корпусе механизма, часть связана с ведомыми шестернями конической конфигурации. Именно коническая форма способствует раздвижению и линейному перемещению шестерен, воздействующих, в свою очередь, на диски и блокирующих дифференциал. Для усиления конструкции в нее зачастую вводят вторую ведомую пару, а также распорные пружины.

Кулачковый дифференциал

Кулачковая система интересна в первую очередь тем, что позволила отказаться от применения классических шестерен в пользу сепараторного кольца, воздействующего на сухари, которые играют роль сателитов. Ведомые шестерни чаще всего сохраняются, хотя в некоторых конструкциях вместо них успешно применяют кулачковые диски или специальные кольца с волнообразной поверхностью.

Кулачковый дифференциалПринцип работы кулачкового дифференциала основан на расклинивании сухарей между дисками – значит, при достижении некоторой разницы в угловых скоростях наступает мгновенная блокировка, а до этого момента дифференциал работает как классический механический. В наше время кулачковые механизмы, в силу своей конструктивной сложности и высоких эксплуатационных качеств, получили широкое распространение на военных и специализированных транспортных средствах, а также некоторых полноприводных автомобилях.

Вязкостная муфта

Вязкостная муфта или вискомуфта представляет собой, по сути, упрощенный и унифицированный вариант дискового дифференциала. Основным элементом конструкции является резервуар с вязкой жидкостью, в которой расположены наборы фрикционов – один соединен с полуосью, второй сообщается с ротором. Это позволяет пропорционально увеличивать сопротивление с увеличением разницы между угловыми скоростями вращения ведущих колес.

Вязкостная муфта

Главное достоинство вискомуфты – простота и дешевизна. Тем не менее, она достаточно громоздка и малоэффективна в действительно экстремальных дорожных условиях. Поэтому основная сфера применения муфты – недорогие легкие кроссоверы. Так она полностью раскрывает свой потенциал, выступает в роли удобно и надежного механизма.

В последние годы появление новых конструкционных материалов, совершенствование технологий их обработки и расширение возможностей компьютерного моделирования сформировали благоприятные условия для развития самоблокирующихся дифференциалов. Известные и проверенные конструкции улучшаются, создаются новые, перспективные механизмы. Вполне возможно, что вскоре самоблокирующийся дифференциал станет неотъемлемой частью большинства автомобилей.

voditelauto.ru

Самоблокирующийся дифференциал / Доработки / ГАЗ-Клуб Екатеринбург

потому что меня часто спрашивают…

Самоблокирующийся дифференциал

1. позволяет устранить пробуксовку при разных коэффициентах сцепления колес автомобиля. 2. повышает проходимость автомобиля и его управляемость при движении по дорогам с разным покрытием. 3. улучшает динамику разгона автомобиля на дорогах с любым покрытием. ну это все реклама…

вернемся к реальности — зачем оно надо ?! Вы никогда не застревали на своей любимой Волге? Видели как буксует одно колесо которое висит в воздухе или попало в грязь/снег, а второе спокойно стоит и машина никуда не едет? это работает дифференциал его задача передавая крутящий момент на колеса, но при этом позволять им вращаться с разной угловой скоростью но часто этот плюс превращается в большой минус…

и тогда на сцене появляется дифференциал повышенного трения его конструкция позволяет колесам вращаться с немного различной угловой скоростью, но при этом в нужный момент блокироваться и передавать равный крутящий момент от мотора на оба задних колеса

Что такое самоблокирующийся червячный дифференциал? Самоблокирующийся червячный дифференциал (самоблок) — устройство, которое позволяет частично компенсировать главный недостаток свободного дифференциала, а именно его полную беспомощность при наезде одного колеса на скользкое покрытие. По принципу работы, самоблокирующиеся дифференциалы можно разделить на два типа: speed sensitive, то есть срабатывающих от разницы в угловых скоростях вращения полуосей, и torque sensitive — срабатывающих от разницы передаваемого на полуоси крутящего момента. Для понимания работы самоблока сначала разберёмся с принципом работы обыкновенного дифференциала и его недостатками. Дифференциал — это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста. Принцип работы обыкновенного дифференциала Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой). При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте. Однако, ввиду физики устройства, у планетарного механизма есть очень нехорошее свойство: он стремится передать полученный крутящий момент туда, куда легче. Например, если оба колеса моста имеют одинаковое сцепление с дорогой и усилие, необходимое для раскручивания каждого из колёс одинаковое, дифференциал будет распределять крутящий момент равномерно между колёсами. Но стоит только появится ощутимой разнице в сцеплении колёс с дорогой (например, одно колесо попало на лёд, а другое осталось на асфальте), как дифференциал тут же начнёт перераспределять момент на то колесо, усилие для раскрутки которого наименьшее (то есть на то, которое находится на льду). В результате, колесо, находящееся на асфальте перестанет получать крутящий момент и остановится, а колесо, находящееся на льду примет на себя весь момент и будет вращаться с увеличенной угловой скоростью, причем планетарный механизм будет играть роль редуктора, повышающего скорость вращения этого колеса. Естественно, это явление сильно ухудшает проходимость и управляемость автомобиля. Ведь по логике вещей, в рассмотренной ситуации момент желательно передавать на колесо, расположенное на асфальте, чтобы автомобиль мог продолжить движение. В полноприводных автомобилях дифференциалом обычно оборудованы два моста, а зачастую дифференциал можно обнаружить еще и между мостами (межосевой дифференциал). Таким образом, мы получаем схему трансмиссии, в которой присутствуют целых три дифференциала: два мостовых и один межосевой. Последний необходим для постоянного движения с полным приводом и передачей момента на все четыре колеса. Ведь в повороте колёса рулевого моста (обычно переднего) имеют совсем другие угловые скорости, нежели чем колёса заднего моста. Межосевой дифференциал призван передавать крутящий момент от коробки передач к обоим ведущим мостам с разным соотношением угловых скоростей. Такая схема с тремя дифференциалами является одной из самых распространённых схем для постоянного полного привода (Full time 4WD). Возвращаясь к вышеописанному проблемному свойству планетарного механизма, интересно рассмотреть ситуацию, когда полноприводный автомобиль с межосевым дифференциалом одним из четырёх колёс попал на тот же лёд (или в скользкую яму). Что тогда произойдёт? Дифференциал моста, колесо которого находится на льду, отдаст весь полученный крутящий момент на это колесо. Межосевой дифференциал, в свою очередь, тоже стремится передать крутящий момент туда, куда легче. Естественно, межосевому дифференциалу легче отдать момент на мост с прокручивающимся на льду колесом, нежели чем на мост, колёса которого имеют хорошее сцепление с дорогой и могут двигать автомобиль. В результате, весь крутящий момент от двигателя и коробки передач пойдёт на раскручивание единственного колеса, находящегося на льду. Остальные три колеса остановятся и не будут получать никакого крутящего момента от дифференциалов. Итог: из четырёх ведущих колёс осталось только одно, которое проскальзывает на льду — полноприводный автомобиль «застрял». Как же заставить дифференциалы передавать крутящий момент на колёса с более хорошим дорожным сцеплением? Для этого были разработаны различные способы частичной и полной, ручной и автоматической блокировки дифференциалов, которые будут рассмотрены ниже. Основной целью блокировки дифференциала является передача необходимого крутящего момента обоим его потребителям (полуосям или карданам). Существуют принципиально разные методы решения данной задачи.Самоблокирующийся червячный дифференциал типа «Квайф»

Автором этой конструкции является англичанин Rod Quaife. В данном случае, оси сателлитов параллельны полуосям. Сателлиты расположены в своеобразных карманах чашки дифференциала. При этом парные сателлиты имеют не прямозубое зацепление, а образуют между собой еще одну гипоидную пару, которая расклиниваясь, так же участвует в процессе блокировки.

Принцип работы:

На рисунке приведен эскиз самоблокирующегося дифференциала. Рассмотрим его элементы и принцип работы. Когда одно из колес (например, правое) начинает отставать, связанная с ним полуосевая шестерня 4 вращается медленнее корпуса 1 и поворачивает входящий с ней в зацепление сателлит 5. Он передает движение связанному с ним сателлиту 5 из левого ряда, а тот, в свою очередь, на левую полуосевую шестерню 3. Так обеспечиваются разные угловые скорости колес в повороте. Благодаря разности крутящих моментов на колесах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни 3, 4 и сателлиты 5, 6 торцами к корпусу 1, 2. Сателлиты 5, 6 также прижимаются к поверхности отверстий 8, в которых они расположены. За счет этого и возникают силы осуществляющие частичную блокировку. Степень блокировки определяется соответствующим коэффициентом.

Кулачковый дифференциал

Кулачковый дифференциал является одним из дифференциалов повышенного трения. Такие дифференциалы при передаче крутящего момента к ведущим колесам автомобиля увеличивают его на отстающем колесе по сравнению с забегающем (буксующим).

Принцип работы кулачкового дифференциала иллюстрирует следующая схема:

На ней изображены две зубчатые рейки 2 и 3 со скругленными кулачками, водило дифференциала 1, в отверстиях которого располагаются сухарики 5. Ведущим звеном является водило. Усилие от водила передается на сухарики 5. Сухарики, опираясь закругленными концами на кулачки реек 2 и 3, толкают рейки в направлении перемещения водила. При одинаковых скоростях реек 2 и 3 все элементы на схеме движутся с той же скоростью, а сухарики в отверстиях водила неподвижны. Рассмотрим случай, когда скорость одной рейки, например, нижней рейки 2, становиться выше. Тогда ее кулачек, на который опирается сухарик, «убегает» вперед. Верхняя рейка своим кулачком подталкивает сухарик вниз. Скорость верхней рейки будет меньше, чем скорость водила. Но для перемещения сухарика требуется преодолеть трение в парах «отверстие водила-сухарик» и «сухарик-кулачек верхней рейки». Поэтому усилие, передаваемое от водила на отстающую рейку будет выше, чем на перемещающуюся с большей скоростью.

Для того, чтобы из рассматриваемой схемы получить реальную конструкцию, достаточно «свернуть» в кольцо обе рейки и водило. Цифрами на рисунке обозначены те же детали, что и на предыдущей схеме. Водило 1 соединено с корпусом дифференциала и ведомой шестерней главной передачи. Внутренняя звездочка 2 с кулачками через шлицевое соединение передает момент на левую полуось. Наружная звездочка 3 — на правый борт автомобиля. Представленная конструкция обеспечивает увеличение момента на отстающем колесе в 4-5 раз по сравнению с буксующим. Шариковый дифференциал он же ДАК (Дифференциал автоматический красикова)

Принцип работы • Механизм представляет собой симметричный, механический дифференциал с автоматической блокировкой. • Дифференциал не содержит электронных, пневматических, гидравлических и других компонентов управления. • Чисто механическая система деталей, не требует регулировки, настройки или наладки. • Система смазки стандартная, как у классического дифференциала. • Габариты и вес устройства аналогичен классическому дифференциалу. • Количество основных деталей, 6 шт. • Монтаж автоматического дифференциала на автомобиль не отличается от монтажа классического дифференциала. • Автоматический дифференциал предназначен для работы в трансмиссиях любых колёсных транспортных средств, на различных дорогах и бездорожье, во всёх диапазонах скоростей и нагрузок. 1. Фланец шестерни главной передачи. 2. Корпус дифференциала. 3. Полуоси транспортного средства. 4. Полуосевые элементы. 5. Канал для прохождения шариков. 6. Тела качения – шарики.

«ДАК» — состоит из корпуса 2, с расположенными в центре двумя цилиндрическими полуосевыми элементами 4 торцами соприкасающимися друг с другом. На поверхностях полуосевых элементов выполнена винтовая резьба, на одном правого, на другом левого направления вращения. В корпусе 2 продольно оси его вращения выполнены два параллельных отверстия 5 близко расположенные друг к другу, равные диаметру применяемого шарика. Концы этих отверстий, соединены между собой, образуют замкнутый канал овальной формы, который заполняется шариками 6 одного диаметра. Замкнутая цепочка из шариков 6, если убрать полуосевые элементы 4, может перемещаться в овальном канале 5 совершенно свободно, без помех. Цепочка шариков в канале представляет собой как бы шестерню овальной формы, зубьями которой являются шарики. Одна длинная ветвь овального канала 5 расположена ближе к оси вращения полуосевых элементов 4 и вскрыта вдоль для погружения частей шариков в винтовые канавки резьбы полуосевых элементов. В каждый виток резьбы, заглублено по одному шарику цепочки, соединяя цепочкой шариков оба полуосевых элемента в единую кинематическую схему. Если мы станем поворачивать полуосевые элементы 4 в противоположные стороны, то цепочка шариков 6 придёт в движение, разрешая полуосевым элементам 4 легко и свободно поворачиваться. В этом случае «ДАК» работает как обычный дифференциал. Вращая корпус устройства 2, мы передаём мощность, через цепочку шариков 6 на винтовые канавки полуосевых элементов 4, а они, через полуоси 3, на колёса транспортного средства. При прямолинейном движении автомобиля полуосевые элементы неподвижны. Неподвижны и цепочки шариков их соединяющие. Оба ведущих колеса вращаются с одинаковой скоростью. В повороте наружное колесо увеличивает свои обороты относительно внутреннего колеса. Полуосевой элемент начинает вращаться, воздействуя на цепочки шариков своими винтовыми канавками. Цепочка шариков плавно сдвигается в овальном канале, позволяя другому полуосевому элементу, имеющему винтовые канавки противоположного направления вращения, вращаться в противоположную сторону, уменьшая обороты внутреннего колеса в той же пропорции, в которой увеличиваются обороты наружного. Таким образом, выполняется поворот автомобиля. В случае, когда одно из колёс попадает на скользкий участок, обычный, «классический» дифференциал позволяет колесу с наименьшей тягой увеличивать свои обороты, т.е. буксовать, юзить и т.д. С дифференциалом «ДАК» этого не происходит. Так как в этом случае полуосевой элемент буксующего колеса начинает вращаться. Его вращение, неизбежно вызывает вращение соединённого с ним цепочками шариков противоположного полуосевого элемента, который мгновенно довернёт другое колесо и вытолкнув машину, не даст ей буксовать. То есть проходимость, устойчивость и вездеходность автомобиля существенно увеличивается.

volga.ural.ru

Что такое самоблокирующийся червячный дифференциал? - Офф-роад оборудование - О товарах - Каталог статей

Что такое самоблокирующийся червячный дифференциал?

 

 Самоблокирующийся червячный дифференциал (самоблок) - устройство, которое позволяет частично компенсировать главный недостаток свободного дифференциала, а именно его полную беспомощность при наезде одного колеса на скользкое покрытие. По принципу работы, самоблокирующиеся дифференциалы можно разделить на два типа: speed sensitive, то есть срабатывающих от разницы в угловых скоростях вращения полуосей, и torque sensitive — срабатывающих от разницы передаваемого на полуоси крутящего момента. Для понимания работы самоблока сначала разберёмся с принципом работы обыкновенного дифференциала и его недостатками.

Дифференциал — это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста.

Принцип работы обыкновенного дифференциала

Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой).

При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте.

Однако, ввиду физики устройства, у планетарного механизма есть очень нехорошее свойство: он стремится передать полученный крутящий момент туда, куда легче. Например, если оба колеса моста имеют одинаковое сцепление с дорогой и усилие, необходимое для раскручивания каждого из колёс одинаковое, дифференциал будет распределять крутящий момент равномерно между колёсами. Но стоит только появится ощутимой разнице в сцеплении колёс с дорогой (например, одно колесо попало на лёд, а другое осталось на асфальте), как дифференциал тут же начнёт перераспределять момент на то колесо, усилие для раскрутки которого наименьшее (то есть на то, которое находится на льду). В результате, колесо, находящееся на асфальте перестанет получать крутящий момент и остановится, а колесо, находящееся на льду примет на себя весь момент и будет вращаться с увеличенной угловой скоростью, причем планетарный механизм будет играть роль редуктора, повышающего скорость вращения этого колеса. Естественно, это явление сильно ухудшает проходимость и управляемость автомобиля. Ведь по логике вещей, в рассмотренной ситуации момент желательно передавать на колесо, расположенное на асфальте, чтобы автомобиль мог продолжить движение.

В полноприводных автомобилях дифференциалом обычно оборудованы два моста, а зачастую дифференциал можно обнаружить еще и между мостами (межосевой дифференциал). Таким образом, мы получаем схему трансмиссии, в которой присутствуют целых три дифференциала: два мостовых и один межосевой. Последний необходим для постоянного движения с полным приводом и передачей момента на все четыре колеса. Ведь в повороте колёса рулевого моста (обычно переднего) имеют совсем другие угловые скорости, нежели чем колёса заднего моста. Межосевой дифференциал призван передавать крутящий момент от коробки передач к обоим ведущим мостам с разным соотношением угловых скоростей. Такая схема с тремя дифференциалами является одной из самых распространённых схем для постоянного полного привода (Full time 4WD).

Возвращаясь к вышеописанному проблемному свойству планетарного механизма, интересно рассмотреть ситуацию, когда полноприводный автомобиль с межосевым дифференциалом одним из четырёх колёс попал на тот же лёд (или в скользкую яму). Что тогда произойдёт ? Дифференциал моста, колесо которого находится на льду, отдаст весь полученный крутящий момент на это колесо. Межосевой дифференциал, в свою очередь, тоже стремится передать крутящий момент туда, куда легче. Естественно, межосевому дифференциалу легче отдать момент на мост с прокручивающимся на льду колесом, нежели чем на мост, колёса которого имеют хорошее сцепление с дорогой и могут двигать автомобиль. В результате, весь крутящий момент от двигателя и коробки передач пойдёт на раскручивание единственного колеса, находящегося на льду. Остальные три колеса остановятся и не будут получать никакого крутящего момента от дифференциалов. Итог: из четырёх ведущих колёс осталось только одно, которое проскальзывает на льду — полноприводный автомобиль «застрял». Как же заставить дифференциалы передавать крутящий момент на колёса с более хорошим дорожным сцеплением? Для этого были разработаны различные способы частичной и полной, ручной и автоматической блокировки дифференциалов, которые будут рассмотрены ниже.

Основной целью блокировки дифференциала является передача необходимого крутящего момента обоим его потребителям (полуосям или карданам). Существуют принципиально разные методы решения данной задачи. В данном разделе мы рассмотрим способ частичной блокировки с помощью самоблокирующегося дифференциала. Другие способы частичной блокировки дифференциала можно посмотреть здесь, а с метод полной блокировки дифференциала можно ознакомится в разделе «Что такое принудительная блокировка?»

Самоблокирующийся червячный дифференциал типа «Квайф»

 

Автором этой конструкции является англичанин Rod Quaife. В данном случае, оси сателлитов параллельны полуосям. Сателлиты расположены в своеобразных карманах чашки дифференциала. При этом парные сателлиты имеют не прямозубое зацепление, а образуют между собой еще одну гипоидную пару, которая расклиниваясь, так же участвует в процессе блокировки.

 

Принцип работы cамоблокирующегося дифференциала

 

 

 

 

 

 

 

 

 

 

 

 

 

На рисунке приведен эскиз самоблокирующегося дифференциала. Рассмотрим его элементы и принцип работы.

Когда одно из колес (например, правое) начинает отставать, связанная с ним полуосевая шестерня 4 вращается медленнее корпуса 1 и поворачивает входящий с ней в зацепление сателлит 5. Он передает движение связанному с ним сателлиту 5 из левого ряда, а тот, в свою очередь, на левую полуосевую шестерню 3. Так обеспечиваются разные угловые скорости колес в повороте. Благодаря разности крутящих моментов на колесах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни 3, 4 и сателлиты 5, 6 торцами к корпусу 1, 2. Сателлиты 5, 6 также прижимаются к поверхности отверстий 8, в которых они расположены. За счет этого и возникают силы осуществляющие частичную блокировку. Степень блокировки определяется соответствующим коэффициентом.

 

svdkomi.ru

Самоблокирующиеся дифференциалы | Трансмиссия

Для повышения проходимости на некоторых ТС устанавливают самоблокирующиеся дифференциалы, которые обеспечивают передачу большего вращающего момента на колесо, имеющее лучшее сцепление с опорной поверхностью и вращающееся с меньшей угловой скоростью (отстающее колесо), по сравнению с колесом, находящимся на участке с недостаточными высокими сцепными качествами и вращающимся с большей угловой скоростью (забегающее колесо). Таким образом, суммарная сила тяги обоих колес увеличивается. Отношение момента на отстающем колесе Мот к моменту на забегающем колесе Мзаб называется коэффициентом блокировки (Коб = Мот/Мзаб).

Оптимальный коэффициент блокировки определяется отношением максимального и минимального коэффициентов сцепления, которое для наиболее характерных условий движения находится в пределах 3… 5.

Из большого числа разных по принципу действия самоблокирующихся дифференциалов наиболее широко используются дифференциалы повышенного трения — конические и кулачковые, а также механизмы типа муфт свободного хода. Например, на многоосных полноприводных колесных машинах на первом и втором мостах (ведущих, с управляемыми колесами) установлены межколесные конические дифференциалы повышенного трения, а на третьем и четвертом ведущих мостах — механизмы типа муфт свободного хода. Последние могут быть применены в редукторах между первым и вторым мостами, а также между третьим и четвертым.

Межколесный дифференциал передних центральных редукторов

Рис. Межколесный дифференциал передних центральных редукторов:1 — ведомая коническая шестерня; 2 — опорная шайба; 3 — сателлит; 4 — крестовина; 5 — вкладыш; 6 — полуосевые шестерни; 7 — пружина; 8 — корпус дифференциала

Далее приведено описание устройств и работы указанных механизмов.

Дифференциал передних центральных редукторов автомобиля относится к дифференциалам повышенного трения. Вращающий момент от ведомой конической шестерни 1 передается через корпус 8 дифференциала на крестовину 4. Работает этот дифференциал так же, как и обычный конический, однако он обеспечивает большее перераспределение вращающего момента на полуосях. Это происходит вследствие значительного увеличения среднего диаметра опорных шайб 2, сателлитов 3 и наличия пружин 7, постоянно поджимающих сателлиты к неподвижным относительно корпуса дифференциала вкладышам 5. Осевое усилие на сателлите, возникающее в результате зацепления его с полуосевыми шестернями 6, суммируется с усилием пружины, и на поверхностях опорной шайбы возникает повышенный момент трения. Если одно колесо попадает на скользкую дорогу или лед, а второе находится на хорошей дороге, то на последнем колесе будет возникать вращающий момент, равный сумме вращающего момента колеса, стоящего на скользкой дороге, и момента трения, возникающего внутри дифференциала. Это обстоятельство способствует повышению проходимости автомобиля.

Каждая пружина сателлитов сжата под усилием 1,7 кН (170 кгс), поэтому в целях безопасности разбирать и собирать дифференциал повышенного трения необходимо в специальном приспособлении.

Дифференциал задних центральных редукторов автомобиля относится к самоблокирующимся дифференциалам, работающим по принципу муфты свободного хода.

Вращающий момент от ведомой конической шестерни 1 передается через корпус 4 дифференциала на ведущую муфту 3.

Ведущая муфта имеет прямоугольные зубья, расположенные по наружному диаметру, и трапециевидные зубья, расположенные по внутреннему диаметру торца муфты. Вращающий момент от ведущей муфты передается на две полумуфты 5, на торце которых также имеется по два ряда зубьев — наружный и внутренний. Наружный ряд зубьев полумуфты силовой; зубья этого ряда зацепляются с аналогичными зубьями ведущей муфты. Внутренний ряд зубьев полумуфты имеет специальный профиль: эти зубья служат для отключения полумуфты от ведущей муфты. На наружном диаметре внутреннего ряда зубьев полумуфты установлено разрезное распорное кольцо 9, обеспечивающее бесшумную работу дифференциала. От каждой полумуфты вращающий момент передается через эвольвентные шлицы на полуосевую шестерню 6 и полуось автомобиля. Внутри ведущей муфты установлено центральное кольцо 10, которое удерживается от осевого перемещения стопорным кольцом 11.

Межколесный дифференциал задних центральных редукторов

Рис. Межколесный дифференциал задних центральных редукторов:1 — ведомая коническая шестерня; 2 — шпонка; 3 — ведущая муфта; 4 — корпус дифференциала; 5 — полумуфта; 6 — полуосевая шестерня; 7 — пружина; 8 — стакан пружины; 9 — разрезное распорное кольцо; 10 — центральное кольцо; 11 — стопорное кольцо; 12 — дистанционная втулка

На обоих торцах центрального кольца имеются расположенные друг против друга зубья специального профиля. Во впадины между этими зубьями входят зубья внутреннего ряда полумуфт, а также зубья разрезных колец. Зубья центрального кольца, взаимодействуя с зубьями полумуфты, в определенных условиях способствуют выведению полумуфты 5 из зацепления с ведущей муфтой 3.

Шпонка 2, установленная в ведущей муфте, препятствует проворачиванию разрезного распорного кольца, которое удерживает полумуфту в отключенном положении.

Полумуфты постоянно поджимаются к ведущей муфте с помощью спиральных пружин 7, опирающихся крайними витками на полуосевые шестерни и на полумуфты через стаканы 8. Между полуосевыми шестернями установлена дистанционная втулка 12, предохраняющая от смещения полуосевые шестерни при установке полуосей.

При движении автомобиля по прямой ровной дороге дифференциал не работает: заблокированы все детали дифференциала и полуоси вращаются как единое целое со скоростью ведомой конической шестерни.

При движении по бездорожью раздельное вращение колес (одного моста) исключено, оба колеса принудительно вращаются с одинаковой частотой, что увеличивает общую тягу и улучшает проходимость автомобиля.

При повороте автомобиля забегающее колесо стремится вращаться быстрее ведомой конической шестерни и ведущей муфты. При этом полумуфта забегающего колеса, опираясь своими профильными зубьями на зубья центрального кольца, отходит от ведущей муфты и выключается. Разрезное распорное кольцо, находящееся на полумуфте, вращается вместе с ней до тех пор, пока не упрется краем выреза в шпонку, сидящую в ведущей муфте. В этот момент торцы зубьев разрезного распорного кольца установятся против торцов зубьев центрального кольца и будут удерживать полумуфту от включения. На протяжении всего поворота забегающая полумуфта выключена и не передает на полуось вращающий момент. Усилие будет передаваться только на полумуфту, соединенную с ведущей муфтой.

При повороте на скользких дорогах полумуфта забегающего колеса может не отключаться. Поворот при этом происходит вследствие проскальзывания отстающего колеса.

При выходе автомобиля из поворота угловые скорости забегающей и отстающей полумуфт выравниваются. Разрезное распорное кольцо при этом несколько отходит назад, зубья его сходят с зубьев центрального кольца, и полумуфта под действием сжатой пружины входит в зацепление с ведущей муфтой. При движении автомобиля по инерции с поворотом отключается не забегающая муфта, а отстающая, так как в этом случае ведущим элементом является не корпус дифференциала, а забегающее колесо.

При движении автомобиля назад по прямой дифференциал работает так же, как и при движении вперед, но в этом случае прижаты противоположные боковые стороны ведущих зубьев ведущей муфты и полумуфты.

Работа дифференциала на поворотах при движении автомобиля назад не отличается от работы дифференциала на поворотах при движении вперед.

Для изготовления шестерен главных передач, шестерен и крестовин дифференциалов применяются хромистые и хромоникелевые стали. Корпуса дифференциалов, картеры главных передач, балки ведущих мостов изготавливают из ковкого чугуна и углеродистой стали, полуоси — из хромистой, хромокремнемарганцевой и хромоникелевольфрамовой сталей.

В настоящее время для распределения моментов в требуемом соотношении между выходными валами (в ведущих мостах и раздаточных коробках) находят применение различные механизмы, в частности вязкостные муфты, героторные механизмы, дифференциалы повышенного трения, «Квайф», «Торсен» (трех типов) и др.

ustroistvo-avtomobilya.ru

Что такое самоблокируемый червячный дифференциал? | Fermer.Ru - Фермер.Ру - Главный фермерский портал

Самоблокируемый червячный дифференциал (самоблок) - устройство, которое позволяет частично компенсировать главный недостаток свободного дифференциала, а именно его полную беспомощность при наезде одного колеса на скользкое покрытие. По принципу работы, самоблокирующиеся дифференциалы можно разделить на два типа: speed sensitive, то есть срабатывающих от разницы в угловых скоростях вращения полуосей, и torque sensitive — срабатывающих от разницы передаваемого на полуоси крутящего момента. Для понимания работы самоблока сначала разберёмся с принципом работы обыкновенного дифференциала и его недостатками.Дифференциал — это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста.

Принцип работы обыкновенного дифференциала

Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой). При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте.

Однако, ввиду физики устройства, у планетарного механизма есть очень нехорошее свойство: он стремится передать полученный крутящий момент туда, куда легче. Например, если оба колеса моста имеют одинаковое сцепление с дорогой и усилие, необходимое для раскручивания каждого из колёс одинаковое, дифференциал будет распределять крутящий момент равномерно между колёсами. Но стоит только появится ощутимой разнице в сцеплении колёс с дорогой (например, одно колесо попало на лёд, а другое осталось на асфальте), как дифференциал тут же начнёт перераспределять момент на то колесо, усилие для раскрутки которого наименьшее (то есть на то, которое находится на льду). В результате, колесо, находящееся на асфальте перестанет получать крутящий момент и остановится, а колесо, находящееся на льду примет на себя весь момент и будет вращаться с увеличенной угловой скоростью, причем планетарный механизм будет играть роль редуктора, повышающего скорость вращения этого колеса. Естественно, это явление сильно ухудшает проходимость и управляемость автомобиля. Ведь по логике вещей, в рассмотренной ситуации момент желательно передавать на колесо, расположенное на асфальте, чтобы автомобиль мог продолжить движение.

В полноприводных автомобилях дифференциалом обычно оборудованы два моста, а зачастую дифференциал можно обнаружить еще и между мостами (межосевой дифференциал). Таким образом, мы получаем схему трансмиссии, в которой присутствуют целых три дифференциала: два мостовых и один межосевой. Последний необходим для постоянного движения с полным приводом и передачей момента на все четыре колеса. Ведь в повороте колёса рулевого моста (обычно переднего) имеют совсем другие угловые скорости, нежели чем колёса заднего моста. Межосевой дифференциал призван передавать крутящий момент от коробки передач к обоим ведущим мостам с разным соотношением угловых скоростей. Такая схема с тремя дифференциалами является одной из самых распространённых схем для постоянного полного привода (Full time 4WD).

Возвращаясь к вышеописанному проблемному свойству планетарного механизма, интересно рассмотреть ситуацию, когда полноприводный автомобиль с межосевым дифференциалом одним из четырёх колёс попал на тот же лёд (или в скользкую яму). Что тогда произойдёт ? Дифференциал моста, колесо которого находится на льду, отдаст весь полученный крутящий момент на это колесо. Межосевой дифференциал, в свою очередь, тоже стремится передать крутящий момент туда, куда легче. Естественно, межосевому дифференциалу легче отдать момент на мост с прокручивающимся на льду колесом, нежели чем на мост, колёса которого имеют хорошее сцепление с дорогой и могут двигать автомобиль. В результате, весь крутящий момент от двигателя и коробки передач пойдёт на раскручивание единственного колеса, находящегося на льду. Остальные три колеса остановятся и не будут получать никакого крутящего момента от дифференциалов. Итог: из четырёх ведущих колёс осталось только одно, которое проскальзывает на льду — полноприводный автомобиль «застрял». Как же заставить дифференциалы передавать крутящий момент на колёса с более хорошим дорожным сцеплением? Для этого были разработаны различные способы частичной и полной, ручной и автоматической блокировки дифференциалов, которые будут рассмотрены ниже.

Основной целью блокировки дифференциала является передача необходимого крутящего момента обоим его потребителям (полуосям или карданам). Существуют принципиально разные методы решения данной задачи. В данном разделе мы рассмотрим способ частичной блокировки с помощью самоблокируемого дифференциала. Другие способы частичной блокировки дифференциала можно посмотреть здесь, а с метод полной блокировки дифференциала можно ознакомится в разделе «Что такое принудительная блокировка?»

Самоблокируемый червячный дифференциал типа «Квайф»

 

 

 

 

 

 

Автором этой конструкции является англичанин Rod Quaife. В данном случае, оси сателлитов параллельны полуосям. Сателлиты расположены в своеобразных карманах чашки дифференциала. При этом парные сателлиты имеют не прямозубое зацепление, а образуют между собой еще одну гипоидную пару, которая расклиниваясь, так же участвует в процессе блокировки.

Принцип работы Самоблокируемого дифференциала

На рисунке приведен эскиз самоблокируемого дифференциала. Рассмотрим его элементы и принцип работы.

Когда одно из колес (например правое) начинает отставать связанная с ним полуосевая шестерня 4 вращается медленнее корпуса 1 и поворачивает входящий с ней в зацепление сателлит 5. Он передает движение связанному с ним сателлиту 5 из левого ряда, а тот, в свою очередь, на левую полуосевую шестерню 3. Так обеспечиваются разные угловые скорости колес в повороте. Благодаря разности крутящих моментов на колесах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни 3, 4 и сателлиты 5, 6 торцами к корпусу 1, 2. Сателлиты 5, 6 также прижимаются к поверхности отверстий 8, в которых они расположены. За счет этого и возникают силы осуществляющие частичную блокировку. Степень блокировки определяется соответствующим коэффициентом.

fermer.ru

Самоблокирующийся дифференциал (LSD)

Самоблокирующийся дифференциал - тип дифференциала с блокировкой, срабатывающей в случае появления большой разницы в скорости вращения полуосей привода колес. Существует несколько конструкций блокировок для разных дорожных покрытий и типов автомобилей.

Трансмиссия

Английскую аббревиатуру LSD (limited slip differential) на русский язык можно перевести как дифференциал с повышенным внутренним сопротивлением. Стандартный (открытый, свободный) дифференциал допускает наличие разницы в угловых скоростях выходных валов, вплоть до полной остановки одного из них. Это можно наблюдать на застрявшей в грязи машине, когда одно колесо прокручивается, а другое стоит на месте. В конструкции дифференциала LSD предусмотрена блокировка, допускающая небольшую разницу в скорости вращения валов, но срабатывающая в случае большой диспропорции между ними. В автомобилях такие дифференциалы с блокировкой используются в двух основных случаях: если это внедорожник, или если это - спортивный автомобиль с двигателем, обеспечивающим чрезмерный крутящий момент. В первом случае блокировка срабатывает, чтобы автомобиль не застревал, а во втором - для обеспечения эффективного старта с места, чтобы колеса не проскальзывали на асфальте.

Принцип работы дифференциала LSD

Блокировка, вне зависимости от конструкции, срабатывает, когда разницы в угловых скоростях колёс превышает определенный, заранее установленный предел. После срабатывания блокировки крутящий момент передаётся на оба колеса в равной пропорции. Это продолжается либо до восстановления контакта с дорогой обоими колесами, либо до полной потери сцепления с поверхностью.

Популярные виды LSD-дифференциалов

В конуструкции блокировок, использующихся в ведущих мостах легковых автомобилях, преобладают два основных типа. Конструкция первого типа основана на чувствительности к разнице скоростей. Второй тип конструкции - механизм, чувствительный к появлению разницы в передаче крутящего момента. В современных автомобилей чаще встречаются блокировки первого типа становятся всё более популярными. Причина в том, что к первому типу относятся блокировки на основе вискомуфты, то есть простые в производстве и неприхотливые в обслуживании. Относящиеся ко второму типу механические блокировки дороже и раньше выходят из строя за счет применения большого количества деталей.

Дифференциалы LSD, чувствительные к разнице скоростей

Вязкостные дифференциалы

Распространенный тип дифференциала повышенного трения, основанный на действии вискомуфты. Помимо надежности заслужили популярность плавностью работы - их действие основано на изменениях в свойствах специального геля, меняющихся бесступенчато. Поскольку основная тенденция в развитии современных автомобилей - стремление любыми способами повысить комфорт для водителя, это свойство оказалось ценным. Однако у вязкостных дифференциалов есть и свои недостатки. Как и в любом узле, в котором передача усилия производится за счет давления жидкости, при их работе теряется часть энергии, что приводит к повышению расхода топлива. Во-вторых, они крайне чувствительны к повышенным нагрузкам - перегрев отрицательно действует на гель, лишая его рабочих свойств. Иными словами, побуксовав в снегу в течение продолжительного времени, можно быть уверенным, что работа блокировки ухудшилась и в следующий раз будет уже менее эффективной. Механические блокировки, например, работают одинаково вплоть до поломки. В общем случае вязкостный дифференциал требует замены при пробеге 100 тысяч километров.

Как и любой другой резервуар с жидкостью, вискомуфта чувствительна к состоянию уплотнений. Поэтому внутреннюю часть дифференциала делают полностью герметичной, чтобы силиконовый гель не смешивался с трансмиссионным маслом, смазывающим шестерни. В случае разгерметизации вискомуфту извлекают и заменяют новой.

Дифференциалы на основе героторного насоса

В дифференциалах этого типа с внутренней стороны установлен вращающийся героторный насос, а на вращающемся приводном валу укреплено зубчатое колесо, которое находится внутри насоса. При возникновении разницы в в скорости вращения корпуса героторного насоса и зубчатого колеса, происходит сжатие жидкости внутри насоса. Находящаяся под давлением жидкость передает крутящий момент на "отстающее" колесо, которое в данный момент стремится остановиться, так как имеет сцепление с дорогой. Эти системы стремительно набирают популярность по мере увеличения степени компьютерного управления узлами автомобиля (системы EBD и тому подобные), так как, в отличие от вискомуфты, работой героторного насоса можно управлять.

Дифференциалы LSD, чувствительные к разнице в передаче крутящего момента

К этому типу относятся механически дифференциалы червячного типа, обеспечивающие автоматическую блокировку при возникновении разности крутящих моментов между корпусом и приводным валом. Если одно из колес проскальзывает, крутящий момент, падает, червячный дифференциал перераспределяет крутящий момент на свободное колесо. При этом колесо блокируется не полностью, и степень блокировки зависит от степени падения крутящего момента. Самоблокирующиеся дифференциалы типа "Торсен"

Слово Torsen в наше время - торговая марка, а образовалось оно при сложении двух слов "torque" - "крутящий момент" и "sensing" - "чувствительный". Под маркой Torsen выпускаются конструкции двух типов. Самоблокирующиеся дифференциалы типа "Квайф"

Сателлиты дифференциала типа Quaife (их обычно 10) не крепятся на осях, как у аналогов, а находятся в закрытых нишах корпуса. Все они параллельны полуосям, однако в отличие от  Torsen Т-2, где каждый сателлит постоянно контактирует с обеими полуосевыми шестернями, в Quaife правый ряд сателлитов находится в контакте с правой полуосевой шестерней, левый – с левой.

blamper.ru