Система жидкостного охлаждения. Системы охлаждения


Схемы систем охлаждения двигателя, принцип работы

Схемы систем охлаждения двигателя практически идентичны на всех машинах. На современных автомобилях применена гибридная система. Да, именно такая, потому что в охлаждении участвует не только жидкость, но и воздух. Им производится обдув ячеек радиатора. За счет этого охлаждение получается намного эффективнее. Не секрет, что при малой скорости движения циркуляция жидкости не спасает – приходится дополнительно устанавливать вентилятор на радиаторе.

Вентилятор радиатора

Поговорим об отечественных автомобилях, к примеру о «Ладе». Для обеспечения лучшего теплообмена система охлаждения двигателя («Калина»), схема которой имеет стандартную конфигурацию, содержит в себе вентилятор. Его основная функция – это обдув ячеек радиатора потоком воздуха при достижении жидкостью критического значения температуры. Управление работой производится при помощи датчика. На отечественных автомобилях он устанавливается в нижней части радиатора. Другими словами, там находится жидкость, которая отдала тепло в атмосферу. И она должна иметь в этой точке контура температуру 85-90 градусов. При превышении этого значения необходимо провести дополнительное охлаждение, иначе в рубашку двигателя поступит кипяток. Следовательно, работа мотора будет происходить при критических температурах.

Радиатор охлаждения

Он служит для отдачи тепла в атмосферу. Жидкость проходит по сотам, которые имеют узкие каналы. Все эти ячейки соединены тонкими пластинами, которые улучшают отдачу тепла. При движении с большой скоростью воздух проходит между сотами и способствует быстрому достижению результата. Этот элемент содержит любая схема системы охлаждения двигателя. «Фольксваген», к примеру, также не является исключением.

Выше был рассмотрен вентилятор, который монтируется на радиаторе. Он производит обдув воздухом при достижении критического значения температуры. Для улучшения эффективности работы элемента необходимо следить за чистотой радиатора. Его соты забиваются мусором, ухудшается теплообмен. Воздух плохо проходит через ячейки, отдача тепла не производится. Результат – повышается температура двигателя, его работа нарушается.

Термостат системы

Это не что иное, как клапан. Он реагирует на изменение температуры в контуре системы охлаждения. Подробнее о них будет рассказано ниже. Схема системы охлаждения двигателя УАЗ основана на использовании качественного термостата, который изготовлен из биметаллической пластины. Под действием температуры эта пластина деформируется. Сравнить ее можно с автоматическим выключателем, используемым в электроснабжении домов и предприятий. Единственное отличие – производится управление не контактами выключателя, а клапаном, который осуществляет подачу горячей жидкости в контуры. В конструкции имеется еще и возвратная пружина. При остывании биметаллической пластины она возвращается в исходное положение. А вернуться ей помогает пружина.

Датчики, используемые в охлаждении

В работе участвуют всего два датчика. Один устанавливается на радиаторе, а второй – в рубашке блока двигателя. Вернемся опять к отечественным автомобилям и вспомним «Волгу». Схема системы охлаждения (405) двигателя тоже имеет два датчика. Причем тот, который находится на радиаторе, имеет более простую конструкцию. В его основе тоже лежит биметаллический элемент, который деформируется при повышении температуры. Этот датчик производит включение электрического вентилятора.

На автомобилях классической серии ВАЗ ранее применялся прямой привод вентилятора. Крыльчатка устанавливалась непосредственно на оси помпы. Вращение вентилятора производилось постоянно, независимо от того, какая температура в системе. Второй же датчик, устанавливаемый в рубашке двигателя, служит для одной цели – передачи сигнала на индикатор температуры в салоне.

Жидкостный насос

Вернемся снова к «Волге». Система охлаждения двигателя (406), схема которой содержит в себе циркуляционный жидкостный насос, не может попросту без него функционировать. Если не придавать жидкости движение, то она не сможет перемещаться по контурам. Следовательно, появится застой, тосол начнет закипать, а мотор может заклинить.

Конструкция жидкостного насоса очень проста – алюминиевый корпус, ротор, шкив привода с одной стороны и пластиковая крыльчатка – с другой. Установка производится либо внутри блока двигателя, либо снаружи. В первом случае привод осуществляется, как правило, от ремня ГРМ. Например, на автомобилях ВАЗ, начиная с модели 2108. Во втором случае привод осуществляется от шкива коленчатого вала.

Контур печки

На некоторых автомобилях, произведенных несколько десятилетий назад, устанавливались двигатели с воздушным охлаждением. Неудобство в этом случае одно: приходилось использовать бензиновую печку, которая «съедала» немало топлива. Но если применяются жидкостные схемы систем охлаждения двигателя, можно взять горячий тосол, который подается в радиатор. Благодаря вентилятору печки производится подача горячего воздуха в салон.

Во всех автомобилях радиатор печки монтируется под панелью приборов. Сначала устанавливается электровентилятор, затем на него – радиатор, а сверху подходят воздуховоды. Они необходимы для распределения горячего воздуха по салону. В новых автомобилях управление распределением его производится при помощи микропроцессорных систем и шаговых двигателей. Они открывают или закрывают заслонки в зависимости от температуры в салоне.

Расширительный бачок

Всем известно, что любая жидкость при нагревании расширяется – увеличивается в объеме. Поэтому необходимо, чтобы она куда-то уходила. Но с другой стороны, при остывании жидкости объем ее уменьшается, следовательно, необходимо ее вновь добавлять в систему. Вручную сделать это невозможно, но вот при помощи расширительного бака данную процедуру можно автоматизировать.

В большинстве современных автомобилей применяются схемы систем охлаждения двигателя герметичного типа. Для этих целей предусмотрено наличие на расширительном бачке пробки с двумя клапанами: один на впуск, второй – на выпуск. Это позволяет обеспечить в системе давление, близкое к одной атмосфере. При снижении его показателя происходит всасывание воздуха, при повышении – сброс.

Патрубки систем охлаждения

Для обеспечения циркуляции жидкости схемы систем охлаждения двигателя содержат в себе резиновые патрубки. С их помощью производится передача жидкости между узлами. Патрубок – это резиновая трубка. Внутри у нее имеется армирование, которое повышает прочность изделия. Патрубки имеют различную длину и форму. Эти параметры зависят от модели автомобиля.

Крепление патрубков производится при помощи металлических хомутов червячного типа. Чтобы обеспечить максимальную непроницаемость, можно использовать герметики из силикона. Разумно их применять в том случае, когда в местах подключения патрубков к системе охлаждения имеются небольшие дефекты. Благодаря герметику происходит заполнение всех неровностей. При эксплуатации автомобиля необходимо следить внимательно за состоянием патрубков. Не допускается появление трещин, иначе произойдет утечка жидкости и нарушение герметичности системы.

Выводы

Проведя доскональный анализ, можно увидеть, что схема работы системы охлаждения двигателя, несмотря на конфигурацию, одинакова на всех автомобилях. Для эффективной работы системы необходимо следить за состоянием всех ее элементов. Не только поломка термостата, но даже неисправность клапанов в пробке расширительного бачка может стать причиной повышения температуры охлаждающей жидкости. Поэтому нужно своевременно производить обслуживание системы, чтобы в неподходящий момент она не подвела. В противном случае возможно нарушение функционирования двигателя. Чрезмерный перегрев блока цилиндров может привести к появлению трещин, а также заклиниванию поршневой группы.

fb.ru

Система охлаждения двигателя: как она работает?

При работе автомобиля сгорает топливная смесь, освобождая огромное количество тепла. Чтобы не перегревался и не подвергался разрушению двигатель, в транспортные средства устанавливается система охлаждения (СО), состоящая из нескольких элементов, о функциях каждого из них расскажем подробно.

Работа системы охлаждения

Как только запускается мотор, начинают вращение лопасти помпы. Они принуждают охлаждающую жидкость (ОЖ) циркулировать по малому кругу обращения СО. Мотор прогревается и выходит на отметки рабочей температуры. После этого открывается термостат, ОЖ переходит в режим циркуляции по большому кругу СО, уже включая и радиатор. Уже в охлаждённом виде технические жидкости попадают в рубашку мотора. Если температура ОЖ поднимается до 100 градусов и выше, включается вентилятор, усиливающий воздушные потоки, которые проходят через радиатор, тем самым, делая процесс охлаждения намного эффективней. У автомобилей, выпущенных пару десятков лет назад, вентилятор соединён с валом помпы ремнём, и потому вращение происходит постоянно.

Что заливать в систему охлаждения?

В качестве ОЖ используются тосол или антифриз. Они имеют в составе химические элементы и соединения, не позволяющие воде превращаться в лёд даже при самых низких температурах. ОЖ также содержат вещества, благодаря которым предотвращается:

  • Вспенивание;
  • Появление коррозии и ржавчины;
  • Смазывается водяной насос.

А вот воду использовать в качестве ОЖ нельзя, поскольку она очень скоро разрушит металл СО. Нагреваясь, ОЖ увеличивается в объёме, и её излишки начинают выбрасываться в расширительный бачок, соединённый с горловиной радиатора гибким шлангом. Через расширительный бачок ОЖ заливают и, при необходимости, доливают.

В салоне машины есть ещё один радиатор, так называемая печка. Зимой автовладельцы, как правило, открывают заслонку печки и нагретая ОЖ циркулирует по теплообменнику, согревая и воздух салона в автомобиле.

СО довольно проста и практически не требует никакого обслуживания. При отсутствии утечек ОЖ система работает без проблем 2 года. По истечении двух лет ОЖ в системе следует заменять, и при этом постоянно отслеживать состояние патрубков: резина от старости может пересохнуть и растрескаться, и произойти это может в дороге. Тогда продолжать движение будет невозможно. Следовательно, через каждые 5 – 6 лет надо производить замену всех резиновых патрубков.

В транспортных средствах, выпущенных недавно, СО ещё работает и для:

  • Охлаждения масла;
  • Воздуха системы вентиляции;
  • Турбонаддува;
  • Кондиционера;
  • Печки салона;
  • Газа в рециркуляционной системе;
  • Рабочей жидкости АКПП.

Виды систем охлаждения

Нужно отметить, что современное автомобилестроение использует три вида систем охлаждения:

  • Жидкостную;
  • Воздушную;
  • Комбинированную.

Жидкостная СО, которая отводит тепло потоком жидкости, применяется чаще всех остальных. Она функционирует с гораздо меньшим шумом, чем её воздушная сестра, причём, равномерно и очень эффективно охлаждает детали мотора.

Типичные поломки в системе охлаждения

Поломки СО не относятся к неисправностям, с которыми движение запрещено, однако, каждый разумный автовладелец весьма заинтересован в продлении срока службы своего железного коня, и его сердца – двигателя. И в первую очередь, это касается необходимости интенсивного отвода тепла.

К самым распространённым причинам поломок в СО относится:

  • Течь;
  • Не герметичность.

Это может произойти из-за резкой смены температуры окружающей среды. Ещё одна популярная поломка – закоксованность шлангов и патрубков системы. Они теряют эластичность под воздействием тех же высоких температур. ОЖ может протекать и ввиду повреждений радиатора от удара, или в результате химического воздействия составляющими тосола. Из строя может выйти и термостат. Он находится в контакте с жидкостью, и потому коррозирует, а потом может и заклинить. Серьёзная неприятность для системы – поломка помпы, или циркуляционного насоса из-за некачественной запчасти, или износа. Понять и уловить это можно по характерному свисту подшипника. Это означает, что пришло время замены циркуляционного насоса. Иногда СО банально засоряется из-за отложения солей в каналах. Циркуляция ОЖ нарушается, отвод тепла при этом ухудшается, что приводит к перегреву двигателя.

Уход за системой охлаждения

Элементарные правила эксплуатации СО и их соблюдение позволяет автовладельцам избегать, или минимизировать негативное воздействие неисправностей на работу машины. Следует постоянно контролировать уровень охлаждающей жидкости в системе. Её объём может меняться, а зависит это от условий эксплуатации автомобиля. Если уровень ОЖ понижается постоянно, значит, нужно искать место утечки тосола. Нередко пятна ОЖ обнаруживаются на узлах и агрегатах в моторном отсеке. Перегрев двигателя может происходить, когда:

  • Заклинивает термостат,
  • Засоряются каналы,
  • Уровня ОЖ в системе недостаточно.

Причину же недостаточного нагрева двигателя следует искать в заклиненном термостате.

blog-mycar.ru

Система охлаждения двигателя.

  Система охлаждения двигателя предназначена как все понимают для защиты двигателя от перегревов, которые пагубно влияют на его здоровье, а также для поддержания постоянной оптимальной рабочей температуры охлаждающей жидкости. Оптимальной рабочей температурой принято считать диапазон 75-90 градусов по цельсию, так как именно в пределах этих температурных значений достигаются оптимальные тепловые зазоры между основными трущимися деталями двигателя.

Начнем с того, что упомянем о том, что системы охлаждения двигателей тоже бывают разными, я имею ввиду различия по принципу работы и устройству, а так же целесообразности применения каждой из этих систем в той или иной отрасли автомобилестроения. Речь идет о воздушном и жидкостном способах охлаждения моторов.  Самым простым типом охлаждения двигателя является конечно же воздушный. Возьмем в качестве примера двигатель трактора Т-40. Что мы там увидим, да ничего сверхъестественного, все до безобразия просто: отдельный блок с мощным вентилятором, приводимым в движение ременной передачей от шкива коленвала с помощью специально выстроенного пути, во время работы направляет мощный поток воздуха на ребристые гильзы двигателя, ребристыми они сделаны как раз для лучшей теплоотдачи. Так же на пути того же воздушного потока установлен масляный радиатор для охлаждения масла. Такой способ называется принудительным воздушным, но как и везде тут есть свои недостатки: охлаждение лишь направленным потоком воздуха не может обеспечить постоянную температуру и она будет скакать то вверх то вниз, что не очень хорошо. Поэтому чтобы избежать клина двигателя при кратковременных перегревах на двигателях с принудительным воздушным охлаждением при конструировании были предусмотрены увеличенные тепловые зазоры между поршнем и гильзой, а также увеличенные тепловые зазоры поршневых колец.

  Еще в качестве примера двигатели с воздушным охлаждением в большом количестве применяются на мотоциклах, думаю многие смотря на мотоциклетный мотор вряд ли задумывались о системе его охлаждения. Там также применяется как принудительное воздушное охлаждение так и свободное. То есть двигатель ничем не охлаждается а тупо отдает свое тепло в атмосферу, а при движении охлаждается лишь встречным потоком воздуха. Представьте себе попасть на моторе с таким двиглом в пробку, его придется постоянно глушить чтобы он остыл, потом завести проехать пять метров и снова глушить чтоб не грелся во время ожидания. Большинство мотоциклетных моторов, как оппозитных так и простых, выполнены во многом из алюминия, во первых потому что он легкий, а во вторых обладает хорошей теплоотдачей. Сейчас же на современные мото-моторы инженеры стараются устанавливать именно жидкостную систему охлаждения, так как она более стабильна и менее подвержена риску перегрева. К слову, то что сейчас устанавливают на гоночные мотоциклы в качестве двигателя, вполне можно было бы установить в какой нибудь жигулятор, вместо родного мотора.

  Теперь рассмотрим жидкостную систему охлаждения двигателя на самом простом примере. Итак, основные составляющие жидкостной системы охлаждения:

  • Радиатор - основной резервуар ОЖ системы охлаждения.
  • Рубашка системы охлаждения двигателя - полости в блоке и ГБЦ двигателя, которые заполнены охлаждающей жидкостью.
  • Термостат - небольшая деталька, необходимая для регулирования постоянной рабочей температуры двигателя.
  • Помпа - или насос системы водяного охлаждения, необходима для обеспечения циркуляции ОЖ между радиатором и водяной рубашкой.
  • Датчик температуры ОЖ - и так понятно.
  • Система патрубков и шлангов - необходима для соединения радиатора и водяной рубашки блока двигателя.
  • Расширительный бачок - нужен для устранения потерь ОЖ при её расширении или закипании.

  А сейчас попробуем понять как это всё работает. Основная часть охлаждающей жидкости находится в радиаторе, водяной рубашке и системе патрубков. Вся система охлаждения выстроена как замкнутый круг с помощью каналов в блоке и ГБЦ и соединено это все с радиатором. Водяная помпа, установленная на определенном отрезке круга охлаждения обеспечивает циркуляцию жидкости при работе двигателя. Помпа приводится в движение от коленвала, ременным или шестеренчатым приводом, и скорость вращения вала помпы напрямую зависит от оборотов коленвала двигателя. То есть, чем больше обороты двигателя, тем больше он нуждается в охлаждении, следовательно и помпа вращается быстрее, прогоняя и остужая большие объёмы охлаждающей жидкости нежели при спокойной работе двигателя.

  Жидкостная система охлаждения разделена на малый круг охлаждения и полный цикл. Нужно это для обеспечения более быстрого прогрева двигателя и поддержания рабочей температуры двигателя в холодные времена года. Малый круг обеспечивает охлаждение двигателя минуя радиатор. Достигается это благодаря использованию термостата, помогает быстрее прогреть двигатель. После того как двигатель прогрет, термостат открывается и охлаждение происходит уже по полному циклу, то есть охлаждающая жидкость уже проходит через радиатор.

  Профилактика и ремонт системы охлаждения двигателя. Здесь в принципе ничего сложного нет, нужно следить чтобы нигде ни чего не протекало и не мокрело, также следите за уровнем ОЖ в радиаторе и за её цветом. Допустим у вас залит красный антифриз, если вы вдруг заметили что он уже не красный а допустим оранжевый, это верный признак того, что он нуждается в замене. Помните что тосол и антифриз тоже не вечные, и нуждаются в замене хотя бы раз в два года. Но будьте внимательны, последнее время на ремонт попадают моторы, система охлаждения которых как будто работала на кислоте, алюминиевые детали сожраны изнутри, на чугуне огромные раковины, было несколько случаев когда в негодность приходил блок, я уверен что все это благодаря самопальному тосолу и антифризу, раньше, когда двигатели охлаждались обычной водой такого не было.

yamotorist.ru

Система жидкостного охлаждения

Строго говоря, термин «жидкостное охлаждение» не вполне корректен, так как жидкость в системе охлаждения - всего лишь промежуточный теплоноситель, проникающий в толщу стенок блока цилиндров. Роль отводящего агента в системе играет воздух, обдувающий радиатор, поэтому охлаждение современного автомобиля правильней назвать гибридным.

Устройство жидкостной системы охлаждения

Жидкостная система охлаждения двигателя состоит из нескольких элементов. Самый сложный называется «рубашкой охлаждения». Это разветвленная сеть каналов в толще блока цилиндров и головки блока цилиндров. Кроме рубашки в систему входит радиатор системы охлаждения, расширительный бачок, водяной насос, термостат, вентилятор радиатора, металлические и резиновые соединительные патрубки, датчики и контрольные приборы.

Пропилен гликоль - основа охлаждающей жидкости (антифриза) и одобренная ветеринарными врачами пищевая добавка для рациона собак

Система построена на принципе принудительной циркуляции, которую обеспечивает водяной насос. Благодаря постоянному оттоку разогретой жидкости двигатель охлаждается равномерно. Этим и объясняется применение системы в подавляющем большинстве современных автомобилей.

Пройдя по каналам в стенках блока, жидкость нагревается и попадает в радиатор, где охлаждается потоком воздуха. Когда автомобиль движется, для охлаждения достаточно естественного обдува, а когда автомобиль стоит – обдув происходит за счет электрического вентилятора, включающегося по сигналу от датчика температуры.

Подробно о ключевых элементах водяного охлаждения

Радиатор охлаждения

Радиатор - панель из металлических трубок небольшого диаметра, покрытых для увеличения площади теплоотдачи алюминиевым или медным "оперением". В сущности, оперение, это многократно сложенная лента из металла. Общая суммарная площадь ленты достаточно велика, а значит, радиатор может отдать в атмосферу в единицу времени достаточно много тепла.

Самый уязвимый элемент конструкции двигателя - турбокомпрессор (турбина), работающая на крайне высоких оборотах. При перегреве разрушение крыльчатки и подшипников вала практически неизбежно 

Таким образом, разогретая жидкость внутри радиатора циркулирует сразу по всем многочисленным тонким трубкам и охлаждается достаточно интенсивно. В крышке заливной горловины радиатора предусмотрен предохранительный клапан, отводящий пары и избыток жидкости, расширяющейся при нагреве.

В радиаторе автомобиля с автоматической коробкой передач предусмотрен второй, независимый контур, в котором охлаждается трансмиссионная жидкость.

Расширительный бачок

Расширительный бачок служит для компенсации расширения жидкости при повышении температуры. В зависимости от конструкции системы бачок может быть "простым" или "сложным". "Простой" бачок представляет из себя емкость для сбора излишков расширившейся от нагрева жидкости. К нему через крышку подведена резиновая трубка, другим концом присоединенная к патрубку в верхнем бачке радиатора. 

В более сложном варианте бачок - полноправная часть системы охлаждения. Он находится под давлением, и отводящий клапан вмонтирован в крышку бачка. В этом случае в бачке всегда должна быть жидкость, чтобы при падении температуры двигателя в радиатор не попадал воздух. Для контроля на стенку бачка, находящегося под давлением, наносят метки Min и Max. 

Водяной насос, или помпа

Водяной насос обеспечивает циркуляцию охлаждающей жидкости в системе. Как правило, это центробежный насос, в котором давление создает расположенная внутри корпуса на центральной оси крыльчатка с лопастями сложной формы.

Термостат 

Термостат - устройство, поддерживающее постоянную температуру в блоке цилиндров. Он не позволяет жидкости не только перегревать двигатель, но и переохлаждать его в зимний период. С его помощью регулируется объем охлаждающей жидкости, которая проходит через радиатор.

Вентилятор системы охлаждения

В ряде случаев набегающего потока воздуха может быть недостаточно для эффективного обдува радиатора. Для обеспечения отвода тепла в автомобильной системе охлаждения предусмотрен вентилятор. В автомобилях с задним приводом и продольным расположением двигателя нередко применяется механический вентилятор, который приводится в движение ремнем от переднего шкива коленвала. Скорость вращения лопастей регулирует термомуфта (разновидность вискомуфты), к которой привинчена крыльчатка.

Если прикрепить крыльчатку вентилятора к шкиву без термомуфты, при раскручивании двигателя свыше 3000 оборотов лопасти крыльчатки отломятся

В переднеприводных (и большинстве современных заднеприводных) автомобилях используется электрический вентилятор. Он соединен с диффузором, который привинчен к крепежным элементам, расположенным по контуру радиатора. Преимущество электрического вентилятора в возможности гибко управлять его работой при помощи контроллера, руководствующегося показаниями датчика температуры ОЖ.

Вспомогательные элементы

Жидкостная система охлаждения включает в себя и типовые элементы управления: электронный блок, датчик температуры и т.д., а также приспособления для слива жидкости. Жидкость приходится сливать, к примеру, для ремонта двигателя.               

Схема работы системы жидкостного охлаждения

Циркуляция охлаждающей жидкости в системе происходит по малому и большому кругам.

Малый круг задействован при запуске холодного двигателя и обеспечивает ему быстрый прогрев. Двигаясь по малому кругу, жидкость не проходит сквозь радиатор.

Когда температура охлаждающей жидкости повышается до 80 градусов, приоткрывается основной клапан термостата, и циркуляция продолжается по большому кругу, включающему в себя радиатор. (Термостат может быть градуирован и под другую температуру открытия).

При достижении отметки в 94 градуса, начинает закрываться дополнительный клапан термостата, ограничивающий доступ охлаждающей жидкости к малому кругу - от двигателя к насосу. Таким образом термостат не дает чрезмерно разогретой жидкости попадать в стенки блока цилиндров, препятствуя перегреву.

В зависимости от режима работы ДВС цикл движения охлаждающей жидкости в системе может меняться. Объем жидкости, циркулирующей в каждом круге напрямую зависит от того, в какой степени открыты основной и дополнительный клапаны термостата. Эта схема обеспечивает автоматическую поддержку оптимального температурного режима работы двигателя.

Преимущества и недостатки жидкостной системы охлаждения

Главное достоинство жидкостного охлаждения заключается в том, что охлаждение двигателя происходит равномернее, чем в случае обдува блока потоком воздуха. Это объясняется большей теплоемкостью охлаждающей жидкости по сравнению с воздухом.

Жидкостная система охлаждения позволяет значительно снизить шум от работающего двигателя за счет большей толщины стенок блока.

Инерционность системы не дает быстро остывать двигателю после выключения. Разогретая жидкость используется для обогрева салона автомобиля и для предварительного подогрева горючей смеси.

Наряду с этим, жидкостная система охлаждения имеет ряд недостатков.

Основной недостаток заключается в сложности системы и в том, что она работает под давлением после прогрева жидкости. Жидкость, находящаяся под давлением, предъявляет повышенные требования к герметичности всех соединений. Ситуация осложняется тем, что работа системы подразумевает постоянное повторение цикла "нагрев - остывание". Это вредно для соединений и резиновых патрубков. При нагреве резина расширяется, а затем сжимается при остывании, что становится причиной течей.

Кроме того, сложность и большое количество элементов сама по себе служит потенциальной причиной "техногенных катастроф", сопровождаемых "закипанием" двигателя в случае выхода из строя одной из ключевых деталей, например, термостата.

blamper.ru

Система охлаждения двигателя автомобиля

ВниманиеСистема охлаждения двигателя выполняет одну из самых важных функций в ДВС, поэтому выход из строя всей системы или какого-либо элемента может привести к перегреву и выходу из строя двигателя. Движение и эксплуатация транспортного средства с неисправной системой охлаждения нежелательна или запрещена.

Назначение и действие системы охлаждения

Рисунок 4.31 Принципиальная схема системы охлаждения двигателя.

Система охлаждения служит для принудительного отвода тепла от цилиндров двигателя и передачи его окружающему воздуху. Необходимость в системе охлаждения вызвана тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренние детали двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание движущихся деталей вследствие чрезмерного их расширения.

Системы охлаждения практически всех современных автомобилей не отличаются друг от друга. Принципиальная, обобщенная схема работы системы охлаждения приведена на рисунке 4.31, где красным цветом отмечена жидкость нагретая от деталей двигателя и синим – охлажденная в радиаторе системы.

В систему водяного охлаждения с принудительной циркуляцией жидкости входят водяные рубашки соответственно головки и блока цилиндров (о рубашках мы писали выше, изучая одноцилиндровый двигатель), радиатор, нижний и верхний соединительные патрубки со шлангами и водяной насос с водораспределительной трубой, вентилятор и термостат.

При работе двигателя, приводимый от него в действие водяной насос (он же —помпа) создает круговую циркуляцию воды через водяную рубашку, патрубки и радиатор. По водораспределительной трубе вода в первую очередь направляется к наиболее нагреваемым местам блока. Проходя по водяной рубашке блока и головки, вода омывает стенки цилиндров и камер сгорания, охлаждая двигатель. Нагретая вода по верхнему патрубку поступает в радиатор, где, разветвляясь по трубкам на тонкие струйки, охлаждается воздухом, который просачивается мимо трубок под действием тяги, создаваемой вращающимися лопастями вентилятора. Охлажденная вода вновь поступает в водяную рубашку двигателя.

Рисунок 4.32 Схема системы охлаждения.

Основные элементы системы охлаждения

 Радиатор

Рисунок 4.33 Радиатор.

Представляет собой набор тонких трубок, на которые нанизаны тонкие пластины для увеличения площади поверхности, предназначенной для отвода тепла. Вся работа радиатора заключается в том, чтобы охлаждать жидкость, которая циркулирует в его трубках.

На рисунке 4.34 приведен пример участка радиатора с различными вариантами исполнения.

Рисунок 4.34 Варианты исполнения радиатора системы охлаждения.

На верхней и нижней частях радиатора могут быть бачки, к которым подсоединены верхний и нижний патрубки системы охлаждения соответственно. Если есть бачки, то в верхнем, обычно расположена горловина для заливания охлаждающей жидкости. Если бачков нет, то горловина располагается прямо на радиаторе.

Для лучшего охлаждения жидкости трубки делают плоскими и располагают рядами в шахматном порядке. Поперек трубок установлены в большом количестве тонкие латунные пластины, называемые охлаждающими ребрами, которые увеличивают поверхность охлаждения сердцевины и способствуют более интенсивной отдаче тепла от воды воздуху, проходящему через сердцевину.

В системе охлаждения закрытого типа горловину радиатора плотно закрывают специальной пробкой с двойным паровоздушным клапаном (смотрите рисунок 4.35). Воздушный клапан пробки нагружен слабой пружиной и пропускает внутрь радиатора атмосферный воздух, устраняя возможность возникновения в бачке радиатора разрежения, появляющегося при конденсации паров воды. Паровой клапан нагружен более сильной пружиной и открывается для выпуска пара только тогда, когда давление в радиаторе превышает атмосферное и доходит до 1,28—1,38 кг/см2.

Рисунок 4.35 Крышка радиатора.

 Водяной насос

Водяной насос (он же помпа) заставляет охлаждающую жидкость циркулировать по системе. Тип насоса – центробежный. Вращается насос при помощи приводного ремня, установленного на шкив коленчатого вала.

Насос представляет собой довольно простую конструкцию: вал, на одном конце которого установлена крыльчатка (показана на рисунке 4.36), а на втором – шкив для приводного ремня. Вал опирается на подшипник, установленный в крышке помпы. Зачастую корпусом для насоса служит полость или прилив в блоке цилиндров. Вода по подводящему патрубку поступает внутрь корпуса и подводится к центру вращающейся крыльчатки. При этом вода увлекается крыльчаткой, приобретает вращательное движение, под действием центробежной силы отбрасывается к стенкам корпуса и через выходной канал под напором поступает в водяную рубашку двигателя.

Рисунок 4.36 Водяной насос. Крыльчатка.

 Вентилятор

В былые времена вентилятор устанавливался на одной оси с валом водяного насоса, жестко крепился к приводному шкиву и гнал воздух для дополнительного охлаждения радиатора постоянно, пока работал двигатель, так как привод был от коленчатого вала. Летом это, может, и хорошо, а вот зимой, когда температуры окружающего воздуха и так достаточно для охлаждения, дополнительное охлаждение не на пользу. Так же при движении на автомобиле летом, когда часто приходится стоять в пробках, а двигателю работать на низких оборотах, охлаждение будет недостаточное ввиду отсутствия нормального потока воздуха от вентилятора.

ПримечаниеЗдесь стоит отметить важность определенного (довольно узкого) диапазона рабочей температуры двигателя вне зависимости от времени года или нагрузки при работе. Как вывод: перегрев плохо, но и переохлаждение далеко не на пользу.

Но прогресс не стоял и не стоит на месте, потому, поняв, что в постоянно «включенном» вентиляторе пользы ни зимой, ни летом нет, решили установить вентилятор с электромотором, который включается по команде датчика температуры. Удобно – автомобиль быстро прогревается, а при достижении определенной температуры, начинает работать электровентилятор. В современных автомобилях у электровентилятора еще и два режима работы: быстрый и медленный. Управляет этим электроника.

Но есть и еще один способ заставить без электроники работать вентилятор в заданных режимах работы – установить вяскостную муфту. Эта муфта приводится во вращения ремнем от шкива коленчатого вала. Вентилятор «сидит» на оси и при отсутствии надобности в нем не вращается. Как только возникает необходимость в охлаждении, муфта срабатывает и вентилятор начинает вращаться, как бы соединяясь через приводной ремень с коленчатым валом.

 Термостат

Термостат — это клапан, установленный в корпус, который открывается при прогреве охлаждающей жидкости до нормальной рабочей температуры. Пример устройства и работы термостата приведен на рисунке 4.37. Система охлаждения двигателя устроена так, что имеет два круга обращения – малый и большой. Когда клапан термостата закрыт, охлаждающая жидкость при помощи водяного насоса циркулирует только в пределах головки и блока цилиндров, таким образом она быстро прогревается (малый круг). По мере прогрева охлаждающей жидкости, в частности, и двигателя в целом, начинает открываться клапан термостата, пуская охлаждающую жидкость циркулировать через радиатор – большой круг.

ПримечаниеПри чрезмерном перегреве охлаждающей жидкости мощность двигателя и его экономичность снижаются. Если же охлаждающая жидкость, а следовательно, и двигатель, не прогреваются, то увеличивается конденсация топлива, вызывающая смывание смазки со стенок цилиндров и разжижение ее в картере, а также возрастают тепловые потери, что ведет к снижению мощности двигателя и увеличению расхода топлива.

Рисунок 4.37 Работа термостата.

monolith.in.ua

Система охлаждения в двигателях

Строительные машины и оборудование, справочник

Категория:

   Эксплуатация экскаваторов

Система охлаждения в двигателях

Система охлаждения в двигателях внутреннего сгорания предназначена для отвода тепла от узлов и деталей, нагреваемых горячими газами. Средняя температура газов внутри цилиндров обычно составляет 800—900°. При плохом охлаждении двигатель может быстро выйти из строя в результате перегрева цилиндров, поршней и клапанов. Особую опасность представляют выгорание смазки и заклинивание поршней в цилиндрах вследствие большого изменения их размеров.

Охлаждение двигателя не должно быть и чрезмерным, так как теряется полезное тепло и топливо плохо испаряется, трудно воспламеняется, медленно горит, вследствие чего мощность двигателя значительно снижается.

Применяют два способа охлаждения двигателей: жидкостное и воздушное. При жидкостном охлаждении тепло от стенок цилиндра передается жидкости (раствору или воде), которая отдает его воз-духу, а при воздушном охлаждении тепло от стенок цилиндра передается непосредственно воздуху.

Жидкостный способ охлаждения заключается в следующем. Жидкость, заполняющая рубашку блок-картера и головки цилиндров, омывает стенки цилиндров и камер сгорания и отнимает от них тепло. Нагретая жидкость поступает в специальный охладитель (радиатор), где отдает тепло воздуху, а после охлаждения в радиаторе вновь поступает в рубашку блок-картера. Таким образом, в системе охлаждения непрерывно циркулирует жидкость, температура которой при работающем двигателе должна быть в пределах 80—90°.

Рис. 108. Жидкостные системы охлаждения:а — термосифонная, б — принудительная; 1 — сердцевина радиатора, 2 — вентилятор, 3 — шторка, 4 — верхний бак радиатора, 5 — крышка заливной горловины, 6 — пароотводная трубка, 7 — верхний патрубок, 8 — рубашка головки цилиндров, 9 — рубашка блок-карте-ра, 10 — нижний патрубок, 11 — нижний бак радиатора, 12 — пробка сливного отверстия, 13 — паровоздушный клапан, 14 — термостат, 15 — термометр, 16 — водораспределительная труба, 17 — центробежный насос, 18 — водоотводная трубка

В зависимости от способа циркуляции различают две системы охлаждения: термосифонную и принудительную.

Втермосифонной системе охлаждения (рцс. 108, а) циркуляция осуществляется вследствие разности удельного веса холодной и горячей жидкости. При нагревании в рубашке двигателя плотность жидкости уменьшается и она по патрубку поднимается в верхний бак радиатора. В сердцевине радиатора жидкость охлаждается, плотность ее повышается и по патрубку она поступает в рубашку, вытесняя жидкость с меньшей плотностью.

Для повышения интенсивности охлаждения позади радиатора установлен вентилятор.

Преимущества термосифонной системы охлаждения следующие: простота устройства; незначительная интенсивность циркуляции жидкости при пуске и прогреве двигателя; саморегулирование интенсивности охлаждения в зависимости от нагрузки двигателя (при повышении нагрузки увеличивается нагрев жидкости, следовательно, ускоряется ее циркуляция).

Недостатком этой системы является медленная циркуляция воды, что вызывает необходимость увеличения емкости системь и веса двигателя. Недостаточная интенсивность циркуляции повышает испарение жидкости из системы, требует частой проверки уровня жидкости и пополнения системы.

В принудительной системе охлаждения (рис. 108, б) циркуляция создается насосом, который нагнетает жидкость в рубашку блок-картера цилиндров, откуда нагретая жидкость вытесняется в радиатор. После охлаждения в радиаторе она снова поступает к насосу. Разность температур нагретой и охлажденной жидкости не превышает 5—10°.

Интенсивность циркуляции жидкости и воздушного потока, создаваемого вентилятором, зависит главным образом от числа оборотов двигателя. Чтобы при понижении температуры окружающего воздуха и уменьшении нагрузки двигатель не переохлаждался, применяют различные устройства, регулирующие тепловой режим двигателя: термостаты, шторки и жалюзи радиатора.

Нагретые части камер сгорания и цилиндров усиленно охлаждают за счет подачи жидкости в водораспределительную труб, проходящую вдоль верхней части блока. В трубе сделаны отверстия для подачи жидкости в первую очередь к наиболее горячим частям блока цилиндров. Для этой же цели в головках цилиндров дизеля Д-108 установлены водораспределительные насадки-отражатели.

Если система охлаждения разобщается с атмосферой специальным паровоздушным клапаном, то ее называют закрытой. Такая система работает при давлении несколько выше атмосферного, и температура кипения жидкости в ней соответственно повышается. Поэтому в закрытой системе охлаждения испарение жидкости, а значит, и расход ее уменьшаются. Закрытая система охлаждения применяется на дизелях Д-108 и Д-48.

В воздушной системе охлаждения тепло от деталей двигателя отводят, обдувая их воздухом. Для увеличения поверхности охлаждения цилиндры и головки цилиндров двигателя делают с ребрами. В этих двигателях применяют принудительный обдув деталей воздухом вентилятором. От вентилятора воздушный поток поступает к охлаждаемым поверхностям через кожух (дефлектор), который направляет воздушный поток так, чтобы равномерно охлаждать нагретые детали.

Воздушная система охлаждения двигателя по сравнению с принудительной системой жидкостного охлаждения надежнее, проще и дешевле. Вес и габариты двигателя меньше.

К недостаткам воздушной системы охлаждения относятся неравномерное охлаждение деталей двигателя; потеря значительной части мощности (до 10%) на привод вентилятора; сравнительно высокая температура воздуха, идущего от двигателя.

Жидкостная система охлаждения включает радиатор, паровоздушные клапаны, термостат, водяной насос, вентилятор, термометр и трубы.

Радиатор (рис. 109) жидкостной системы служит для охлаждения нагретой жидкости путем отдачи тепла через стенки трубок окружающему воздуху. Он состоит из верхнего бака нижнего бака, сердцевины и деталей крепления. Сердцевины радиатора могут быть трубчатые или пластинчатые. На большинстве дизелей применяют трубчатые сердцевины, которые состоят из нескольких рядов вертикальных овальных (плоских) или круглых латунных трубок.

Рис. 109. Радиатор:а — общий вид, б —трубчатая сердцевина, в — пластинчатая сердцевина: 1 — верхний бак, 2 — крышка, 3 — сердцевина, 4 — краник, 5, 7 — патрубки, 6 — нижний бак, в —трубки, 9 — пластины

Для увеличения поверхности охлаждения трубок и повышения их жесткости на трубки надеты и припаяны к ним тонкие латунные пластины. У некоторых дизелей концы трубок у сердцевин немного выступают над крайними пластинами, так называемыми трубными досками, которые сделаны из более толстого, чем пластины листового металла.

Верхний и нижний баки крепят при помощи болтов к трубным доскам. В дизеле Д-108 сердцевину вместе с баками устанавливают на раму радиатора.

Интенсивность обдува регулируют при помощи шторки (дизели Д-20 и Д-108) или жалюзи (дизель Д-48).

Паровоздушный клапан (рис. 110) служит для отвода паров жидкости при закипании ее в радиаторе и для соединения радиатора с атмосферой при появлении в нем разряжения. У дизеля Д-108 паровоздушный клапан помещен в отдельном корпусе, который привернут к фланцу верхнего бака радиатора. У остальных двигателей он установлен в корпусе крышки горловины радиатора.

Паровой клапак дизеля Д-108, прижимаемый пружиной , открывается при повышении давления в радиаторе свыше 1,2— 1,3 кГ/см2. При этом пары выходят по трубке через отверстие.

Воздушный клапан, также находящийся под воздействием пружины, открывается при понижении давления в радиаторе ниже 0, 96—0,99 кГ/см2. Воздух через отверстие и трубку покупает из атмосферы в радиатор, давление в котором выравнивается до нормального.

Рис. 110. Паровоздушные клапаны:а — воздушный клапан дизеля Д-108, б — паровоздушный клапан дизеля Д-48; 1 — пружина парового клапана, 2 — отверстие для наружной паровоздушной трубки, 3 — воздушный клапан, 4 — внутренняя паровоздушная трубка, 5 — паровой клапан, 6 — фланец верхнего бака радиатора, 7 — верхний бак, 8 — корпус, 9— пароотводная трубка, 10 — паровой клапан, 11 — пружина парового клапана, 12 — запорная пружина, 13 — корпус крышки, 14 — горловина радиатора, 15, 16 — резиновые прокладки. 17 — пружина воздушного клапана, 18 — седло воздушного клапанц

Принцип работы паровоздушного клапана дизеля Д-48 одинаков с описанным.

Термостат служит для ускорения прогрева жидкости при запуске двигателя и автоматического поддержания ее температуры з определенных пределах.

На дизеле Д-108 установлено два одноклапанных термостата (рис. 111), а на дизеле Д-48 — по одному термостату с двумя клапанами.

Пружинная коробка припаяна к донышку обоймы и к крышке, к которой прикреплен стержень клапана. Отверстие служит для выхода воздуха из системы охлаждения при заполнении ее жидкостью. Внутреннее пространство коробки через отверстие в стержне клапана заполняют смесью из этилового спирта и дистиллированной воды. Отверстие в стержне закрывают пробкой. Действие термостата основано на свойстве спирта при повышении температуры переходить в насыщенные пары и изменять давление.

Если температура жидкости в системе охлаждения ниже 70°, то клапан закрыт. Жидкость при этом не циркулирует через радиатор и быстро нагревается в рубашке блока и головке. С повышением температуры от 70 до 85° давление паров внутри коробки возрастает, коробка растягивается и клапан 5 постепенно открывается. Через образовавшуюся щель между тарелкой клапана и седлом фланца жидкость поступает в радиатор, где и охлаждается. При понижении температуры охлаждающей жидкости действие повторяется в обратном порядке.

Насосы центробежного типа с относительно высокой производительностью при небольших габаритах устанавливают в системах с принудительным охлаждением.

Центробежный насос (рис. 112) состоит из корпуса , крыльчатки, закрепленной на валу, и уплотнительного устройства. Вал получает вращение от дизеля.

Жидкость по патрубку поступает внутрь корпуса , к центру крыльчатки. При вращении крыльчатки жидкость отбрасывается Центробежной силой к стенкам корпуса, откуда вытесняется в водяную рубашку двигателя через отводящий патрубок, расположенный касательно к корпусу.

У насоса двигателя Д-108 корпус крепят болтами к кронштейну, который вместе с фланцем прикреплен к кожуху распределительных шестерен. В корпусе вращается пятило-пастная чугунная крыльчатка, укрепленная на валу. В крыльчатке сделано пять разгрузочных отверстий, уменьшающих давление жидкости в полости перед втулкой. К фланцу корпуса насоса присоединяют трубу, подводящую жидкость из радиатора; к фланцу — перепускную трубу, подводящую жидкость из корпуса термостатов; к фланцу — трубу, отводящую, жидкость из насоса.

Рис. 111. Термостат дизеля Д-108:1 — пружинная коробка, 2 — обойма, 3 — фланец, 4 — стержень, 5 — клапан, 6 — отверстие

Вал вращается на, двух бронзовых втулках. Втулку смазывают маслом, поступающим через отверстие во фланце, а втулку — графитовой набивкой, заложенной в канавки на внутренней поверхности втулки. Чтобы предотвратить вытекание масла в зазор между валиком и втулкой, во фланце установлен самоподжимной сальник.

На переднем конце валика укреплена приводная шестерня насоса. Она приводится во вращение от большой промежуточной распределительной шестерни. Чтобы жидкость не подтекала, на конец кронштейна навернута гайка с набивкой. Набивка представляет собой три витка асбестового шнура, пропитанного смесью масла и графита. Подтягивая гайку сальника, можно плотно прижимать набивку к валику.

Производительность насоса при температуре выходящей жидкости 90° и при 1050 об/мин коленчатого вала двигателя равна 12 800 л/ч.

Водяной насос дизеля Д-48 объединен в один агрегат с вентилятором (рис. 113).

Рис. 112. Водяной насос двигателя Д-108:а — схема работы центробежного насоса, б — насос в разрезе, в — детали насоса; 1 — корпус, 2 — крыльчатка, 3 — вал, 4— подводящий патрубок, 5 — отводящий патрубок. 6 — шестерня привода, 7 — передняя втулка, 8 — упорный диск, 9 — фланец кронштейна, 10 — самоподвижной сальник, 11 — сальниковая набивка, 12 — гайка сальника, 13 — задняя втулка, 14 — кронштейн, 15, 17, 18 — фланцы корпуса, 16 — отверстие во фланце кронштейна

Зал насоса вращается в гпех бронзовых втулках запрессованных в корпус насоса. Задняя втулка на одном конце имеет буртик, который входит в прорезь корпуса На другом конце втулки сделана резьба, на которую навертывают гайку сальника.

На задний конец вала насажена крыльчатка, закрепленная на нем коническим штифтом. На переднем конце вала установлен поводок, закрепленный на валу штифтом. Вал насоса приводится во вращение от этого поводка. Он входит в литой паз с внутренней стороны крышки шкива вентилятора, а зазор между крыльчаткой и корпусом насоса должен быть в пределах 0,4—1 мм. Если зазор больше 1 мм, то под крышку надо установить дополнительную прокладку, а если меньше 0,4 мм, то снять одну прокладку.

Крышка прикреплена к шкиву винтами с потайными головками. С крышкой соединена болтами крыльчатка вентилятора.

Рис. 113. Водяной насос и вентилятор дизеля Д-48:1 — крыльчатка вентилятора, 2 — винт, 3 — болт, 4 — поводок вала насоса, 5 — штифт, б — гайка корпуса, 7 — распорная втулка, 8, 22 — шарикоподшипники, 9 — крышка шкива, 10 — пробка, 11 — шкив вентилятора, 12 — втулка, 13 — уплотнение, 14 — задняя опорная втулка, 15 — крыльчатка насоса, 16 — вал насоса, 17 — прокладка, 18 — корпус насоса, 19 — гайка сальника, 20 — сальник, 21 — патрубок, 23 — ремень вентилятора

Шкив вентилятора установлен на двух шарикоподшипниках, расположенных на цилиндрическом конце корпуса насоса и зажатых гайкой и распорной втулкой. Шкив вращается от шкива коленчатого вала через клиновидный ремень. Шарикоподшипники и передние бронзовые втулки вала насоса смазывают дизельным маслом, заливаемым через отверстие в шкиве, закрытое пробкой.

Вода (или другая жидкость) попадает в насос через патрубок, прикрепленный к корпусу двумя болтами. По каналу‘в корпусе вода поступает к крыльчатке насоса. Лопасти вращающейся крыльчатки увлекают за собой воду и под действием центробежной силы выбрасывают ее наружу. Через прямоугольное отверстие в стенке блока цилиндров вода поступает в продольный канал. В верхней части водяной насос резиновым патрубком соединен с корпусом термостата.

Система охлаждения дизеля Д-48 показана на рис. 114. В зависимости от этапа работы дизеля и температуры охлаждающей воды (или другой жидкости) ее циркуляция в системе охлаждения происходит различными путями.

В период работы пускового двигателя, до начала вращения коленчатого вала дизеля, происходит термосифонная циркуляция воды. Вода, нагреваемая в рубашке пускового двигателя, поднимается в головку и оттуда по трубопроводу поступает к боковой коробке верхней половины корпуса термостата.

Далее по обходному каналу вода протекает в нижнюю половину корпуса термостата и затем в головку блоков цилиндров дизеля. Отсюда вода опять попадает в рубашку пускового двигателя.

Рис. 114. Система охлаждения дизеля Д-48:1 — отводящий трубопровод пускового двигателя, 2 — рубашка охлаждения пускового двигателя, 3 — сливной кран блока цилиндров, 4 — рубашка охлаждения блока цилиндров, 5 — водяной насос, 6 — водоподводящий патрубок к водяному насосу, 7 — сливной кран радиатора, 5 — приводной ремень вентилятора, 9 —перепускной патрубок, 10 — вентилятор, 11 — жалюзи радиатора, 12 — радиатор, 13 — крышка заливной горловины с паровоздушным клапаном, 14 — пароотводная трубка, 15 — термостату 16 — термометр, 17 — рубашка охлаждения головки блока

Проходя через головку цилиндров, вода отдает тепло ее схенкам, облегчая этим пуск дизеля.

При прокручивании пусковым двигателем коленчатого вала дизеля, а также во время его работы, когда температура воды ниже 70°, она циркулирует по всей системе, исключая радиатор.

Насос нагнетает воду в продольный канал блока цилиндров и затем в рубашки цилиндров и головки дизеля. Из головки часть воды поступает в рубашку пускового двигателя и оттуда по трубопроводу в верхнюю половину термостата. Другая часть воды из головки цилиндров дизеля попадает в нижнюю половину термостата. В нижней половине термостата оба потока воды соединяются и, омывая пружинную коробку, поступают к клапанам термостата.

При температуре ниже 70° основной клапан термостата закрыт, а вода через открытые вспомогательным клапаном боковые окна по обходному каналу снова подается к насосу. Такая циркуляция ускоряет прогрев дизеля.

Когда температура воды в системе превышает 70°, основной клапан начинает открываться и вода будет поступать как к насосу, так и к радиатору.

При установившемся тепловом режиме дизеля, когда температура воды поднимется выше 83°, основной клапан термостата открывается полностью и весь поток горячей воды направляется в верхний бак радиатора. Опускаясь по трубкам радиатора из верхнего бака в нижний, вода охлаждается. Вентилятор, отсасывая нагретый воздух от радиатора, способствует более интенсивному охлаждению воды.

Для отвода паров воды при ее закипании в радиаторе смонтированы паровой клапан, изготовленный заодно с заливной горловиной, и пароотводная трубка.

Температуру воды контролируют по дистанционному термометру, датчик которого установлен в патрубке верхнего бака радиатора. Воду сливают из системы через краны.

Система охлаждения дизеля Д-108 в основном такая же, как и система охлаждения дизеля Д-48.

В системе охлаждения дизеля У2Д6 (рис. 115) вместо термостатов предусмотрены краны. Открывая кран и закрывая кран, из системы выключают радиатор. Вода, нагнетаемая насосом, Циркулирует внутри двигателя и по перепускной трубе, на которой Установлен кран.

Рис. 115. Система охлаждения дизеля У2Д6:1, 2 — краны, 3 — радиатор, 4 — водяной насос

Читать далее: Система смазки двигателя экскаватора

Категория: - Эксплуатация экскаваторов

Главная → Справочник → Статьи → Форум

stroy-technics.ru