CVT – коробка передач с бесступенчатой трансмиссией. Трансмиссия cvt что это такое


это что за тип КПП, особенности, плюсы и минусы

Вариатор CVT

Вариатор CVT

Автомобильные технологии в наше время развиваются с бешеной скоростью, и мы не заметили, как новый вид трансмиссии плавно вошел в наши будни. Речь в этой статье пойдет о вариаторе CVT. Вы наверняка уже слышали об этом агрегате и многие производители уже давно предлагают его вместо привычной нам автоматической коробки передач. Но как согласиться на такую опцию, если не знаешь что этот такое и как оно работает. Многих беспокоит, долго ли проработает и лучше оно или хуже автомата, а какой будет расход, а как будет разгоняться ваш автомобиль. Я могу продолжать, но нет смысла, вы уже сами представили себя на месте покупателя. Я попробую «без воды» и особо технических терминов доступно объяснить, что такое вариатор CVT, как он работает, что он вам дает.

Почему вариатор CVT лучше обычной автоматической коробки передач. Общие понятия

Разберемся, почему этот вид трансмиссии предпочтительнее обычной автоматической трансмиссии. Вы по определению должны знать, что вам предлагают в автосалоне. Да и стоять на месте тоже не вариант, я считаю нужно двигаться в ногу со временем и пользоваться новыми технологиями.

Вариатор CVT компании Nissan. Общий вид вариатора.Фото: nissan.

Без истории и того, что было раньше. Чтобы не запутать приступим непосредственно к тому что имеем на 2011 год и рассмотрим сразу вариаторы CVT, которые устанавливаются на современные автомобили. Тем более что принцип их работы одинаков, какой бы фирмы производителя вариатор не был. Начнем с общих принципов, а затем немного углубимся (для тех, кому нужен просто принцип и понимание того, что он покупает, хватить и первых 2-х абзацев). Вариатор CVT (Continuously Variable Transmission) – по-русски, непрерывно меняющаяся передача или бесступенчатая трансмиссия. Что это значит? А значит, что вариатор CVT не имеет привычных нам фиксированных передач. Вариатор сам автоматически определяет передаточное число («передачу»), наиболее подходящее для данного момента езды и делает это постоянно, непрерывно. Что такое передаточное число? Официально, передаточное число — это отношение, скорости вращения двигателя к скорости вращения колес. А если проще, то это определенное значение (передача: 1-ая, 2-ая или 5-ая), которое мы выбираем, включая ту или иную передачу, двигаясь на автомобиле. Если понять этот момент, то все остальное покажется очень простым. Вообще, зачем нужна коробка передач? Для того, чтобы автомобиль с постоянными оборотами двигателя, мог двигаться с разной скоростью. То есть, переключая передачу, мы всегда меняли передаточное число. Дек вот вариатор CVT делает это каждую секунду пока вы в движении, сам руководствуясь многими данными: скоростью движения, оборотами двигателя и тем как сильно вы нажали педаль «газа». Как это достигается, разберем позже. Получаем, что вариатор не имеет фиксированных передач, как раньше в виде множества пар шестеренок разного размера, а значит, не имеет рывков и четко выделенных ступеней при разгоне. Вы можете сказать, что коробка автомат тоже сама выбирает передачу в зависимости от тех же факторов и делает это довольно быстро и без особых рывков. Но, привычный нам автомат, ограничен только несколькими фиксированными передачами (передаточными числами), а у вариатора их великое множество. Этот факт позволяет вариатору выбирать то передаточное число («передачу»), которое наиболее подходит для данного режима езды. Что нам дает использование вариатора CVT вместо обычной автоматической коробки передач? Во-первых, мы получаем плавный разгон автомобиля без рывков. При этом разгон по сравнению с самым быстрым «автоматом» происходит намного интенсивнее, то есть автомобиль оснащенный вари

auto21rus.ru

Cvt трансмиссия это что. Вариатор (CVT) – много плюсов и один недостаток

Вариатор (CVT) – много плюсов и один недостаток

Вариатор помогает сэкономить топливо и повысить комфорт вождения. Кроме того, он проще и дешевле в производстве, чем обычные автоматические коробки передач. Однако бесступенчатые автоматические коробки передач так и не смогли завоевать рынок. Не каждого устраивает особенность работы вариатора, и - что еще хуже – иногда они ломаются.

CVT – это сокращение от английского Continuously Variable Transmission, что означает бесступенчатая коробка передач. Вариатор - во многих отношениях трансмиссия необычная. Вместо классических зубчатых колес здесь используется стальной ремень или цепь, которая движется между двумя парами конических колес, образующих шкив.

Колеса установлены парой на входных и выходных валах. Каждая коническая пара может сближаться друг с другом или расходиться, благодаря чему бесступенчато меняется радиус шкива, и достигается плавное изменение передаточного отношения. При этом крутящий момент непрерывно передается от двигателя к колесам.

При движении с постоянной скоростью мотор работает на необычно низких оборотах, что и способствует снижению расхода топлива и повышению уровня комфорта. Пользователи автомобилей с CVT подчеркивают исключительную плавность движения – без толчков и рывков при старте. Вариаторы, как правило, меньше и легче классических автоматов. Поэтому они часто применяются в небольших городских автомобилях, особенно японских марок.

Но если все так хорошо, то почему доля автомобилей с CVT так мала? Выделить главную причину довольно сложно. Но многих водителей не устраивает специфическая работа коробок этого типа. Добавляешь газ, и двигатель, громко завывая, выходит на высокие обороты без заметного ускорения. Тихо становится лишь при движении с постоянной скоростью. Автолюбителей, любящих посильней вдавить педаль газа в пол, подобное поведение легкового автомобиля раздражает. Впрочем, так ведут себя, главным образом, бесступенчатые коробки передач из 80-х и 90-х годов.

Примерно 10 лет назад на рынке стали появляться CVT с так называемыми виртуальными передачами. В таком случае каждой из передач назначено определенное взаимное положение конических колес. Выбрать необходимую передачу можно, например, с помощью подрулевых лопаток (весел).

Данное решение используется с 2005 года в автомобилях Audi, оснащенных бесступенчатой трансмиссией Multitronic. В обычном режиме коробка ведет себя, как классический вариатор, т.е. поддерживает высокие обороты при разгоне. А работу «автомата» CVT имитирует только после перехода в спортивный режим.

Конструктивные особенности.

Вариаторы, условно, можно разделить на две группы: со стальным ремнем и цепью. В бесступенчатых трансмиссиях присутствует и гидротрансформатор. Он нужен, прежде всего, для старта с места. Примечательно, но Multitronic обходится без него. В этих коробках используется пакет сцеплений и двухмассовый маховик.

Вариатор имеет ряд серьезных ограничений, которые инженеры пока так и не смогли обойти. Например, по конструктивным причинам, ни цепь, ни, тем более, стальной ремень не в состоянии передать высокий крутящий момент. Из-за этого область применения CVT в настоящее время ограничена максимальным крутящим моментом двигателя на уровне 350-400 Нм. Впрочем, этот порог перекрывает показатели многих современных двигателей. Тем не менее, в Audi уже начинают отказываться от использования бесступенчатых коробок «Multitronic».

В тоже время, другие производители упорно работают над усовершенствованием конструкции вариатора. Так Subaru демонстрирует все новые модели, оснащенные бензиновыми двигателями с турбонаддувом, полным приводом и бесступенчатой коробкой CVT (например, Lineartronic для Levorg).

Долговечность.

О проблемах Audi с коробками Multitronic производства Luk слышал, наверное, каждый, кто хоть немного интересуется автомобилями. В CVT старого типа (1999-2006 гг.) постоянно сбоит управляющая электроника, выходит из строя механическая часть и преждевременно изнашивается цепь. Примечательно, что цепь использовали как раз для того, чтобы передать более высокий крутящий момент, но инженеры просчитались с ее прочностью. Со временем Немцы существенно доработали свои коробки, но проблемы все еще встречаются. Не вызывают доверия и другие немецкие вариаторы, например, ZF VT1-27T, применявшиеся в Mini R50/R53, и Mercedes 722.7/722.8 для моделей A/B-класса.

Гораздо меньше хлопот доставляют японские конструкции. Хотя, вариатор Jatco, используемый в различных моделях Nissan (например, Qashqai), тоже относится к группе риска. Общая проблема коробок CVT – это ограниченная доступность запасных частей и нежелание некоторых механиков связываться с вариаторами. Бесспорный лидер по части надежности – вариаторы Toyota (Lexus).

Бесступенчатая автоматическая коробка, несмотря на сравнительно простую конструкцию, довольно сложная и дорогая в эксплуатации. В дополнение к неисправностям электроники и ремней/цепей встречается и преждевременный износ маховика. Стоит отметить, что двухмассовый маховик используется лишь в некоторых автомобилях с CVT (Ауди).

Заключение.

Самое главное, не забывать  о регулярной замене масла. К сожалению, не все производители ее рекомендуют. Если в сервисе Вам скажут, что менять масло в вариаторе не надо, то просто поищите другую мастерскую.

 

vvm-auto.ru

CVT трансмиссии. Технологии развития Авторская практическая статья

CVT – технологии развития

В продолжении статьи http://www.autodata.ru/efisakh/2008/cvt_characteristic.pdf

С момента выпуска первой CVT (или CVT 1) для моторов объемом 2-2,5 литра в в1997 году, разработки этих типов трансмиссий продолжались. Линейка разновидностей CVT 1 или Hyper CVT, Hyper CVT M6 которая базировалась на модификации RE0F06A – RE0F06V была заменена на CVT2 или RE0F10A /11A. CVT 2 обозначение дали изготовители как второму поколению midsize front wheel drive автомобилей.

Преследовалось несколько задач : - улучшение экономии топлива - улучшение динамики разгона - уменьшение веса - уменьшение габаритов

Рассмотрим таблицу 1, в которой перечислены общие характеристики CVT 1 и CVT 2.

Прежде всего заметно в строке Pully ratio – расширен диапазон передаточных чисел. Иными словами – с виртуальных 6 передач CVT 1 до виртуальных 7. Чем больше диапазон RATIO – тем ниже обороты на крейсерской скорости, выше топливная экономичность, снижается токсичность выхлопа и уровень шума.

В ручном режиме оставлено 6 передач – но за счет расширенного диапазона передаточных чисел. Основная доработка для расширения ratio coverage коснулась ведущего шкива – его внутренний диаметр рабочей поверхности конуса вблизи вала уменьшен на 5 процентов.

Если рассматривать CVT 2 подробно – то можно сказать, что это не доработанная CVT 1, а полностью спроектированная заново трансмиссия, так как изменения коснулись абсолютно всего. Оставлен только принцип передачи.

Так как работа CVT трансмиссии основана на эффекте трения, то функционирование последней приводит к большому выделению тепла – а следовательно к потерям.

Разработчики решили серьезно снизить потери в CVT 2, для этого : - применены новые материалы при изготовлении шкивов, более высокопрочная сталь, которая позволила снизить толщину стенок шкивов. Шкивы стали легче, меньше момент инерции. - существенно повышена чистота поверхности шкивов, в т.ч и внутренних полостей, это позволило уменьшить зазоры в подвижных соединениях шкива. Для этого на рабочую поверхность в вакуумной камере напыляют тонкий высокопрочный слой покрытия. - подобраны новые пары трения в уплотнительных кольцах и муфтах, совместно с повышенной точностью сопряжения деталей. Это привело к созданию однопоршневого ведущего шкива.

Фото1. Ведущий шкив CVT-1 двухпоршневой.

В RE0F06A ведущий шкив имел двух поршневую конструкцию. На фото 1 видно внутренний поршень и уплотнительное кольцо. Внешний поршень был реализован в наружном барабане шкива. Учитывая не высокую точность обработки поверхностей существовали большие потери из-за негерметичности поршней. Приходилось увеличивать производительность насоса, хотя площадь двух поршней была больше и при одинаковом внутреннем давлении на двухпоршневом шкиве выше усилие сжатия сегментов ремня в сравнении с однопоршневым шкивом.

- полностью изменена конструкция масляного насоса ( Рис.2 )– он стал лопастным и вместе с редукционным клапаном перенесен в поддон. Это позволило снизить его размеры, а размещение в поддоне – снизить насосные потери тем самым увеличив его эффективность. Для этого канал редукционного клапана совмещен с приемным каналом.

Такая конструкция снижает шум насоса, увеличивает эффективность на высоких скоростях. Уменьшается общая длина трансмиссии. Для привода насоса используется отдельная цепь. Фото.3

Фото 2. Насос CVT-1

Фото 3. насос CVT-2

Рис.2 Слева насос CVT-1, справа CVT-2

При работе CVT большие объемы рабочей жидкости закачиваются в шкив очень быстро и также быстро должны стечь из полостей. В процессе частого разгона – торможения это лишние насосные и кинетические потери. Большая производительность на низких оборотах, необходимая для быстрого наполнения шкивов не нужна на больших оборотах или статическом режиме движения, когда объемы уравновешены. Следовательно, высокопроизводительный насос большую часть времени просто работает в холостую, создавая лишние потери и нагревая рабочую жидкость, но низкопроизводительный насос не обеспечит начальной динамики набора давления на малых оборотах. Конструкция насоса CVT 2 выбрана с оптимальной производительностью.

Рис.3 Размещение и привод насоса цепью CVT-2

- заменены подшипники на шариковые как менее шумные и минимизации трения - для улучшения работы пары ремень – шкив и уменьшения шума подшипники валов разнесены : один на шкиве, один в корпусе. ( в Hyper CVT – оба подшипника были на шкиве )

Фото 4. Размещение подшипника вала в корпусе

- уменьшен механизм планетарной передачи forward – reverse, и за счет переноса насоса уменьшена общая длина трансмиссии - установлен сепаратор масла в полости шестерни дифференциала. Уменьшаются потери на трение, нагрев масла и его вспенивание на высоких скоростях. Сечении сепаратора подобрано таким образом, что с ростом оборотов уровень масла понижается в районе рабочей поверхности шестерни дифференциала, но не ниже заданного минимального. - в целом, примененные меры позволили, по заявлению разработчиков, снизить потери на трение на 30 % в сравнении с CVT 1.

ОПТИМИЗАЦИЯ ДАВЛЕНИЯ

В связи с переходом на однопоршневой ведущий шкив пришлось повысить давление в нем, а это привело к увеличению потерь. Так как в RE0F06A линейное давление никак не контролировалось, что приводило к лишним кинетическим потерям, в CVT 2 введена жесткая обратная связь по давлению, кроме этого давление в шкивах стало регулироваться независимо. Для реализации этого добавили линейный соленоид в канал вторичного шкива, давление в котором контролируется независимо от линейного. Электронные датчики давления высокой точности позволяют независимо отслеживать давление в шкивах и понижать его до минимально требуемого без опасности проскальзывания ремня на шкивах. Снижение давления приводит к снижению потерь в CVT. Многочисленные стендовые и дорожные испытания на основе анализа различных условий движения позволили снизить давление до оптимальных величин.

Фото 5. Гидравлический блок управления.

РАСШИРЕНИЕ ДИАПАЗОНА БЛОКИРОВКИ ГИДРОТРАНСФОРМАТОРА

Одним из эффективных способов экономии топлива является блокировка гидротрансформатора. Как говорилось раньше – в режиме гидротрансформатора КПД его не превышает 80 %, когда гидротрансформатор ( ГТ ) переходит в режим гидромуфты - то КПД стремится к 95 %, только при полной блокировке ГТ его КПД будет близко к 99 %. Разница – это кинетические, насосные и тепловые потери. Блокировка ГТ позволяет существенно снизить их, особенно если она происходит как можно раньше. Но на малых скоростях блокировка ГТ может привести к толчкам и шумам из-за неравномерной работы двигателя на малых оборотах. На это, в основном, жаловались владельцы CVT 1 с моторами SR20 c механическим приводом дросселя и QR20 с электронным дросселем, у кого не адаптированы обороты. В CVT 2 введена двухступенчатая блокировка ГТ – скольжения и полная. Два соленоида управляют этими режимами. Давление блокировки контролируется по уровню минимально необходимого проскальзывания в соответствии с крутящим моментом от двигателя. Это улучшает реагирование блокировкой на тот случай, когда водитель резко тормозит, так как расширяет диапазон блокировки и диапазон топливной отсечки двигателя. Одноступенчатая полная блокировка CVT 1 приводила к ощутимому толчку при размыкании ГТ на скорости 20 км.ч и неравномерному замедлению. На моторе с механическим дросселем это усугублялось ранней отсечкой и реакцией системы холостого хода двигателя.

УЛУЧШЕНИЕ РАЗГОННОЙ ХАРАКТЕРИСТИКИ

За счет уменьшения объема масла в шкивах ( внутренних камерах ) и повышении эффективности насоса, а также переделки схемы гидравлики, управления итд, общая реакция существенно улучшена. Точность поддержания давления и его стабильность позволяют переключаться быстро и стабильно без потери момента двигателя.

Улучшение времени отклика сделало возможным улучшить характеристику ускорения и повысить чувство ускорения. Эти, как казалось бы, два одинаковых момента рассматриваются разработчиками по разному. Опрос водителей показал, что они необъективно оценивают ускорение машины, так как в CVT 1 в начальный момент движения обороты двигателя были низкими. В процессе разгона обороты двигателя фиксируются на определенном уровне, а скорость набирается за счет изменения передаточных чисел CVT. У владельцев возникало чувство недостаточного ускорения в силу привычки со ступенчатыми АКПП, где обороты двигателя пропорционально растут скорости авто. Иными словами владельцам не хватало шума двигателя на разгоне, но не фиксированного а пропорционального скорости. Но изначально разработка CVT преследует другие цели, и на первом месте стоит экология, экономичность, снижение шума. Это никак не вяжется с высокими оборотами двигателя. Поэтому было проведено большое количество тестовых поездок и настроен алгоритм переключения таким образом, чтобы у водителя сохранилось чувство высокого ускорения. Это достигнуто снижением задержки реакции автомобиля на педаль акселератора с низких скоростей изменением программы управления. Более резкое изменение передаточных чисел потребовало изменить сечение каналов и плунжеров, например на CVT -1 форма плунжера была выбрана для плавного сброса-набора давления в ведущем шкиве за счет конусных краев.

Форма плунжера CVT-2 не допускает утечки в канале и при сбросе- наборе давления мгновенно открывает канал.

Фото 6. Серволинки изменения передаточных чисел CVT -2 и CVT – 1

Фото 7. CVT -1 сечение плунжера

Фото 8. CVT-2 сечение плунжера.

СИСТЕМА УПРАВЛЕНИЯ

В новом типе СVT применен более мощный процессор обработки данных. Блок управления трансмиссией выделен в отдельный блок, который обрабатывает данные, обмениваясь информацией с другими блоками по высокоскоростной шине CAN.

Так называемые переходы ( виртуальные передаточные числа ), по которым происходит расчет траектории ремня на шкивах, существенно расширены. Количество переходов увеличено, а расчет траектории намного ускорен. Блок хранит больше точек переходов, что позволяет рассчитывать и выбирать более оптимальные передаточные числа в большем диапазоне скоростей и нагрузок. Для этого типа трансмиссии разработан новый тип двигателя – MR20DE. В сочетании с электронный дросселем и системой изменения фаз газораспределения при меньшей мощности он обладает более высоким крутящим моментом на низких и средних оборотах. Такое управление дросселем позволяет избежать ударных нагрузок на трансмиссию и ввести электронную защиту от перегрузки, за счет ограничения момента двигателя по сигналам от блока управления CVT. Блок гидравлического управления для точного управления содержит энергонезависимую память ROM в отдельном блоке, в котором хранятся калибровочные характеристики механических узлов гидроблока – такие как жесткость пружин итд, характерные для каждого блока индивидуально. При настройке блока эти корректирующие величины записываются в ROM каждого блока и подлежат загрузке в электронный блок управления при замене CVT или ее ремонте.

Фото 9. блок ROM

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Много внимания уделено улучшению крепления трансмиссии и ударопрочности. В креплении уделено внимание новому подвесу, подушкам CVT, подушкам двигателя, их вибростойкости и передаче вибраций на кузов. Изменен подрамник, теперь силовой агрегат и трансмиссия закреплены на подрамнике, который в свою очередь крепиться к кузову. За счет уменьшения длины агрегата удалось уменьшить радиус поворота автомобиля.

Все конструктивные изменения предназначены для получения максимальных характеристик в комфорте движения, экономичности, снижению шума и улучшению токсичности выхлопа. Снижение норм выбросов – одна из самых первоочередных задач современных автомобилестроителей. Внедрение CVT трансмиссий – одна из таких возможностей. Но какие бы новшества не разрабатывались и внедрялись – основной проблемой остается водитель, управляющий этим автомобилем. Не грамотность и не понимание работы систем современного авто водителем – самая главная проблема, против которой бессильна любая электроника. Поэтому, для реализации возможностей современного автомобиля, та же компания NISSAN разработала программу повышения квалификации водителя. Для этого отобраны на начальном этапе водители и тестовые машины, оборудованные дополнительными информационными дисплеями, на которых выводится информация в процессе движения, указывающая водителю на его ошибки.

Конечно – это не дорожные знаки и разметка. Это именно стиль или манера вождения, и влияние этого на расход топлива и токсичность выхлопа. По результатам будет разработана школа обучения водительскому мастерству – для тех, у кого состояние педали газа не ограничивается только одним положением – полностью нажата. Таких там быстро высаживают пользоваться общественным транспортом без права управления в дальнейшем. Остальные водители будут управлять современными авто, учитывая безопасность и экологические нормы. Слово “ ВАРИАТОР “ или CVT у российских автовладельцев получило некоторую негативную характеристику, наверное также как и по началу ступенчатая автоматическая трансмиссия перед ручной коробкой передач. Теперь, спустя десяток лет, машина на “механике” почти не продаваемая в крупных городах из-за сложности и нудности управления в пробках – а это неизбежный спутник современного движения в городах. Все хотят автоматическую коробку передач. Наверно нужно еще столько же лет, чтобы водители поняли преимущество CVT перед ступенчатым автоматом и научились ей пользоваться правильно, а не как попало. На это рассчитывают изготовители авто, разрабатывая программы обучения водителей. На это они рассчитывают – внедряя CVT в свой модельный ряд, например только CVT -2 как базовая модель поставляется на следующих авто:

NISSAN LAFESTA, SERENA, BLUEBIRD SYLPHY, DUALIS, X-TRAIL MITSUBISHI OUTLANDER, DELICA D:5 GARANT FORTIS, RVR SUZUKI KIZASHI, LANDY RENAULT KOLEOS CHRYSLER DODGE CALIBER, JEEP COMPASS, JEEP PATRIOT И это далеко не полный перечень фирм и моделей, у любого изготовителя на сегодня уже есть несколько моделей с CVT трансмиссией. Это значит, что в ближайшем будущем их ассортимент только вырастет.

Гаджиев А.О. © Легион-Автодата

ГАДЖИЕВ АРИД ОМАРОВИЧ г. Москва,тел. 8-926-525-6300, е-mail: [email protected], Союз автомобильных диагностов

autodata.ru

cvt трансмиссия. чем от акпп отличается? там 2 педали? и чем cvt от вариатор(CVT) отличается

CVT - Continuously Variable Transmission - трансмиссия с плавно изменяемым передаточным числом и называется вариатором но этот тип трансмиссии не зарекомендовал себя как надёжный в отличие от АКПП. В авто с АКПП всего одна педаль газа, но педали сцепления нет. В самой АКПП содержатся гидротрансформатор, и несколько секторов с планетарными шестернями. Все переключения осуществляются с помощью бортового компьютера.

да две - бесступенчатое переключение ) акпп бывают 4 или 5

у свт трансмиссии абсолютно другой принцип работы и переключений там как таковых не происходит так как там нет никаких ступеней, главным отличием пожалуй является плавный и равномерный разгон на самых оптимальных режимах работы двигателя в отличии от акпп, единственный минус это то что свт трансмиссии ещё не до конца прижились в россии и не зарекомендовали себя как надёжные!

CVT это и есть вариатор. Бесступенчатая трансмиссия, привод ременной или цепной. Есть одна шестерня. Тоже 2 педали. Более плавный ход, экономичность, но ремонт дорогой. АКПП бывают классические (4-5 ступка с гидротрансформатором) , робот, типтроник, изитроник, мультитроник и тд.

touch.otvet.mail.ru

www.roadpart.ru

CVT – коробка передач с бесступенчатой трансмиссией

Вариатор относится к автоматическим коробкам передач и является основной их разновидностью. Как и все остальные трансмиссии, CVT служит для передачи усилия мощности двигателя на ведущие колеса. Однако в нем скрывается одна особенность – CVT-коробка передач не имеет конкретных ступеней. Их численность бесконечна, собственно, из-за чего механизм обрел название «бесступенчатый вариатор».

CVT коробка передач представляет собой 2 раздвижных шкива, которые соединяются при помощи клиновидного ремня. Несмотря на отсутствие передач, вариативная трансмиссия считается более сложной, чем простая АКПП. А состоит CVT-коробка передач из следующих устройств:

  1. Раздвижные шкивы. По своей конструкции они представляют собой 2 две клиновидные «щеки», расположенные на 1 валу. Приводятся в действие специальным гидроцилиндром. Последний сжимает диск в зависимости от оборотов двигателя или по сигналу центрального блока управления.
  2. Клиновидный ремень. Он изготавливается из 2 стальных лент, на поверхности которых есть металлические пластинки. Все элементы располагаются между собой очень плотно. Верхняя часть пластинки имеет конусовидную форму, а в ее основании есть пазы. В них и вставляется металлическая лента.
  3. Гидротрансформатор. Служит для преобразования и передачи мощности (крутящего момента - Н/м) двигателя. Также гидротрансформатор способствует  плавному ходу автомобиля в начале движения. Им укомплектовывается каждая CVT-коробка передач.
  4. Дифференциал. Данный механизм распределяет мощность на колеса привода.
  5. Планетарный механизм пониженной (задней) передачи. Вращает вторичный вал в обратном порядке.
  6. Гидравлический насос. Предназначается для создания давления рабочей жидкости, вследствие которого приводятся в действие гидроцилиндры. Данный инструмент приводится в действие гидротрансформатором.
  7. Блок управления. Это, по сути, «мозг» вариатора. Данный микропроцессорный механизм служит для управления всеми исполнительными устройствами трансмиссии, гидроцилиндрами в том числе. Он получает сигналы с электронных датчиков (контроля расхода топлива, ESP, ABS и многих других) и после принимает решение об увеличении или снижении оборотов двигателя. Для этого электронный блок (ЭБУ) подает свой сигнал на все исполнительные устройства, от действий которых и меняется характеристика движения автомобиля.

Также стоит отметить, что коробка передач «Ниссан» CVT относится к устройствам с ременным приводом. Такими устройствами оснащается большинство современных автомобилей. Это наиболее распространенный тип коробки передач CVT. Реже встречаются коробки с цепным приводом. Как правило, ими укомплектовываются немецкие автомобили марки «Ауди».

Еще некоторые вариаторы имеют возможность работы в механическом режиме. Таким образом автоматическая коробка превращается в механическую. Однако от этого стоимость ее обслуживания не уменьшается. Цена на ремонт и даже на замену масла в вариаторе всегда была большой, что обусловливается сложной конструкцией механизма.

fb.ru

Вариатор - Трансмиссия CVT

Если загорелся Check engineFord Focus 3 - Мини-тестСлабые места Ford Focus 3Как менялся Ford Focus Тест-драйв Ford Focus 3 Тест Ford Focus 3, Astra и VW Golf Советы по обкатке нового автоСтатья об АКПСоветы по буксировкеОпределение неисправности по нехарактерным шумамШины и мненияНадёжная фиксация резьбовых соединенийКак хранить резиновые деталиЧто такое двигатель с наддувомЧто такое трансмиссия с вариаторомРемонт несъёмной направляющей втулки клапанаПодвески американских машинМузей Генри ФордаИстория появления Ford в СССРИстория масляного фильтраЗавод масляных фильтров в СШАОб автомобильных красках DopontFocus II: для тех кто не понялАмериканский и европейский FocusО выходе Focus IIСоветы покупающим б\у Focus 2Об открытии завода во Всеволожске

О некоторых других моделях FordПикапы FordFord Crown VictoriaMustang Cobra от Форда

Русско-английский автомобильный словарь

Бесступенчатая трансмиссия, именуемая на Западе CVT (continuously variable transmission), а у нас клиноременным вариатором, переживает сейчас второе рождение. Одно время всеми отвергнутый, вариатор теперь все чаще и чаще встречается на серийных автомобилях и перспективных концепт-карах. Что же вывело эту конструкцию из небытия? Почему она вновь оказалась в поле зрения инженеровтрансмиссионщиков?

Двигатeль внутреннего сгорания для применения на автомобиле нуждается в коробке передач: ведь диапазон его рабочих оборотов ограничен снизу оборотами холостого хода и сверху — максимальными оборотами. Без коробки передач может обойтись, например, электромотор, наибольший крутящий момент которого достигается в самом начале движения ротора. А поршневому двигателю нужна трансмиссия как минимум с двумя различными передаточными отношениями. Большее необходимо для динамичного трогания с места, а меньшее обеспечит движение с «крейсерскими» скоростями, снижая опасность «перекрутить» двигатель.

Но коробки передач недолго оставались двухступенчатыми. Росли скорости, требования к динамике, экономичности, и передач стало три, четыре, пять... А нынче — почти все спортивные автомобили, да и некоторые серийные (например, BMW 740i и Peugeot 306 XSi) обзавелись шестиступенчатыми механическими коробками. Автоматические гидромеханические трансмиссии тоже имеют четыре—пять ступеней, а трансмиссии грузовиков — и вовсе шестнадцать и даже больше. Причина очевидна: чем больше передач, тем легче для каждого скоростного режима движения подобрать оптимальное передаточное отношение трансмиссии, при котором двигатель будет работать в зоне наибольшего крутящего момента или самых низких удельных расходов топлива. Словом, чем больше передач и чем чаще они меняются, тем выше будет кпд силовой установки.

А теперь отвлечемся от шестеренок и рычагов и попробуем представить предельный случай — трансмиссию с бесконечным числом передаточных отношений, в которой переключения происходят постоянно, а двигатель поддерживает при разгоне обороты, соответствующие максимальному крутящему моменту. Вот она, мечта инженеров-трансмиссионщиков!

ИДЕАЛЬНАЯ ТРАНСМИССИЯ?

Возьмем два конуса, расположим их так, чтобы оси вращения были параллельны, а сужающиеся части направлены в противоположные стороны, натянем между ними ремень — вот и готов простейший конусный вариатор, над чертежами которого размышлял еще великий Леонардо да Винчи. Сместив ремень до упора в одну сторону, мы получим минимальное передаточное отношение вариатора, а, передвигая ремень от края к краю, мы сможем плавно изменять соотношение рабочих диаметров и, таким образом, передаточное число — вплоть до максимального. Такая конструкция вариатора широко использовалась еще в средние века в качестве привода мельничных жерновов.

Потом конусный вариатор стал клиноременным. Ремень приобрел трапецеидальное сечение, а конусы сменили два составных шкива, «разрезанных» по центру ручья-канавки пополам и выполненных раздвигающимися. Когда ведущий шкив раздвинут, его рабочий диаметр получается наименьшим — ремень, повисая скошенными гранями на боковых поверхностях шкива, «проваливается» почти до дна, обкатывая шкив по маленькому радиусу. Если в это время половинки ведомого шкива сжать, например, усилием пружины, то они сдвинутся до тех пор, пока ремень, подобно клину, не «выскочит» наружу шкива и не натянется, обкатывая его по максимальному радиусу. Это будет «первая передача», обеспечивающая максимальное передаточное отношение. Сдвинем разрезной ведущий шкив — и ремень, будучи вытесненным на больший радиус, силой своего натяжения как клином раздвинет ведомый шкив, опустившись глубже. Передаточное отношение при этом соответственно уменьшится, причем плавно и бесступенчато.

К началу XX века клиноременный вариатор прочно занял свое место в индустрии и сельском хозяйстве. Но автомобильные конструкторы на него особого внимания не обращали — ведь ремни тех лет сильно проскальзывали, и кпд такой передачи, особенно при сравнительно больших оборотах и мощностях, был небольшим. Но эксперименты с бесступенчатыми трансмиссиями не прекращались. Austin серийно выпускал малолитражку с так называемым торовым вариатором. Это был тяжелый, сложный механизм и к тому же подверженный быстрому износу.

Немецкий конструктор Граде создал одноименный автомобиль с фрикционным вариатором — крутящий момент с огромного, обитого толстой подошвенной кожей маховика снимался небольшим колесомфрикционом, прижимаемым к нему ближе или дальше от центра. Естественно, что кожа быстро изнашивалась и замасливалась.

Автомобили Minerva имели одно время бесступенчатую импульсную передачу с преобразованием вращательного движения коленвала в возвратно-поступательное качание рычага с переменным плечом опоры и обратно во вращательное. Эту конструкцию погубили ударные нагрузки.

Автомобилисты не вспоминали о клиноременном вариаторе до 1958 года. Неизвестно, что именно натолкнуло голландского инженера Хуба ван Доорна, аладевшего вместе со своим братом Вимом небольшим автозаводом Van Doome Automobilfabriek, обратить внимание на клиновой ремень. Возможно, привод знаменитых голландских мельниц, а может быть, вариаторная передача жатки комбайна... В 1958 году DAF, выпускавший дотоле только грузовики и автобусы, представил публике маленький автомобильчик DAF 600 с двухцилиндровым оппозитным «воздушником» рабочим объемом 590 куб. см. Самой вкусной «изюминкой» машинки была конструкция трансмиссии Variomatic. Сразу после автоматического центробежного сцепления в трансмиссии был установлен дифференциал, который передавал крутящий момент на два ведущих вариаторных шкива, управляемых центробежными и вакуумными регуляторами. От ведущих шкивов вращение двумя клиновыми ремнями (они были выполнены зубчатыми для большей гибкости и лучшего сцепления со шкивами) вращение передавалось на ведомые шкивы, установленные на качающихся полуосях задней независимой подвески, и через маленькие редукторы — на колеса. 22-сильный моторчик и вариаторы позволяли машине разгоняться до скорости 90 км/ч, при этом водитель малышки был избавлен от необходимости оперировать педалью сцепления и рычагом КПП.

Шли годы, росла мощность двигателей, завод DAF был куплен концерном Volvo, вариатор Ван Доорна перекочевал в качестве экзотического «автомата» на автомобили Volvo 3-й серии и прекратил свое существование только в середине 80-х годов. Но особой популярностью вариатор из Голландии и тогда не пользовался. Во-первых, резиновый ремень служил максимум 30000 км, а чаще и того меньше, причем порваться он мог в любую минуту, и тогда автомобиль застывал. Вовторых, динамика и экономичность автомобилей с вариатором были хуже, чем с «механикой» и даже с обычным «автоматом», который к середине 80-х годов стал достаточно компактным и не очень дорогим. А в-третьих, с «вариаторными» автомобилями Volvo случались скандалы — бывали случаи, когда пластмассовая заглушка с карбюратора попадала внутрь трансмиссии и вызывала самопроизвольный рывок автомобиля вперед. Одну даму на Volvo 345 таким образом вынесло на трамвайные пути, где она и столкнулась с не ожидавшим такой прыти трамваем.

Словом, детище Ван Доорна было одной ногой в могиле архивов.

ВАРИАТОР УМЕР. ДА ЗДРАВСТВУЕТ ВАРИАТОР!

Возродить клиноременный вариатор помогли новая технология, электроника и... голландское упорство. Влюбленный в свое детище и уверенный в его будущем. Ван Доорн ушел из фирмы DAF и в 1965 году собрал небольшую команду инженеров под вывеской VDT — Van Doom Transmissie. Ключевой идеей для усовершенствования вариатора была конструкция со стальным ремнем, не подверженным столь быстрому износу. Работа над проектом началась в 1971 году. VDT несколько раз была на грани банкротства: исследования финансировались нерегулярно. Заказчиками в разные времена были и DAF, и Fiat, и Ford. Один раз Ван Доорна спасло от финансового краха только голландское правительство...

В процессе работы над стальным ремнем было сделано открытие — нанизанные на полосы металлические сегменты, толкая друг друга, передавали крутящий момент куда лучше. Итак, благодаря стальному наборному ремню проблема проскальзывания и ресурса вариатора была решена если не полностью, то уж в значительной степени. Осталось оптимизировать управление вариатором, отработав наилучший алгоритм изменения передаточного отношения в зависимости от условий движения.

   

Трансмиссия Variomatic была интегрирована с независимой задней подвеской —ремни вариаторов перекручивались, играя роль шарниров полуосей. Цилиндры на шкивах вариаторов — это исполнительные механизмы вакуумного корректора передаточного отношения

Вот оно, изобретение специалистов VDT. Стальные сегменты замысловатой формы, похожие на стилизованные стрелочки, нанизаны на две стальные 12-слойные полосы

Вариатор малютки DAF управлялся центробежным автоматом и вакуумным приводом. Первый по мере роста оборотов двигателя «повышал передачи», а второй при падении разрежения во впускном коллекторе, как это бывает в нагруженных режимах при открытой дроссельной заслонке, «включал пониженные». Но суммарная характеристика обоих механизмов все же была далека от оптимальной.

А ведь теоретически вариатор хорош тем, что разгонная динамика и экономичность автомобиля с бесступенчатой трансмиссией должны быть лучше, чем у «механики». Например, при интенсивном разгоне двигатель, практически минуя невыгодные переходные режимы, выходит на обороты, соответствующие максимальному крутящему моменту, а набор скорости осуществляется за счет изменения передаточного числа вариатора. И если в процессе движения выдерживать идеальные соотношения между скоростью автомобиля, нагрузкой на двигатель и его оборотами, то кпд такой силовой установки будет очень велик.

Там, где пружинки, грузики и вакуумные мембраны пасуют, помогает электроника, и особенно хорошо это известно японцам. Возрождение вариатора началось именно с Востока—в 1987 году фирма Fuji Heavy Industries, под чьим крылышком выпускаются автомобили Subaru, совместно с инженерами VDT представила миру первый серийный клиноременный вариатор со стальным ремнем, электромагнитным сцеплением и электронным управлением, окрещенный ECVT (Е — от слова electronic). Им оснащалась маленькая машинка Subaru Justy, причем ремни для вариаторов поставляли голландцы.

Дальше — больше. Примеру Subaru последовал Fiat с моделью Uno Selecta, потом Ford (Fiesta), Nissan (Micra). Кстати, на последней машине мы ездили около года тому назад (см. АР № 16, 1995). Заметьте, все эти автомобили — с моторами небольшого рабочего объема, от 1000 до 1600 куб. см. Неужели вариатор не в состоянии передать крутящий момент повыше?

ВАРИАТОР И ФОРМУЛА-1

Ван Доорн был уверен в обратном и, чтобы убедить окружающих автомобилистов, обратился к легендарному Джеку Брэбхэму, конструктору и гонщику. Тот по заказу Ван Доорна спроектировал и построил несколько автомобилей формулы-3 с вариатором и даже гонялся на них, впрочем, без особого успеха. Было это в середине 60-х, а в 1991 году менеджер VDT начал переговоры с Патриком Хэдом, техническим директором команды Williams! «Очень мило, но годится только для малолитражек», — реакция Хэда была типичной для образованного европейского автомобилиста. Но специалистам VDT все же удалось убедить руководство команды, и через полтора года Williams Variomatic был готов для тестов. Сам вариатор, включая наборный из стальных сегментов ремень шириной 30 мм, изготовили на VDT, корпуса, шестерни и сцепления — на Williams, а электроникой и алгоритмом управления трансмиссией занимались обе команды совместно. В 1993 году болид с вариатором опробовал Дэвид Култхард. Результаты обнадеживали — автомобиль с CVT чуть-чуть выигрывал у обычного на каждом ускорении, повороты можно было проходить быстрее, а тормозить — позже. Все было подчинено одной цели — забыв про экономичность, поддерживать на колесах максимальный крутящий или тормозной момент.

Работа шла, срок службы ремня при сумасшедших мощностях формульных моторов достиг четырех часов, достаточных для одной гонки, квалификаций и тренировок, как вдруг чиновники из FIA мигом спустили инженеров с небес на грешную землю, запретив все электронно-управляемые устройства, «хитрые» подвески и трансмиссии. А ведь, вполне вероятно, вариатор мог стать «самой спортивной» трансмиссией. Для него не нужно подбирать передаточные числа под каждую трассу — пилот может менять и коррекгировать алгоритм «переключений»

в процессе гонки. А можно даже создать «виртуальную механическую КПП», зафиксировав сколько угодно передаточных чисел и переключая их традиционными кнопками на руле. Впрочем, такие вариаторы уже разработаны и для обычных автомобилей.

ВАРИАТОР ВЗРОСЛЕЕТ

Дело Ван Доорна живет и побеждает. Производство вариаторов ширится, и одна только Fuji в сотрудничестве с VDT уже изготовила около миллиона агрегатов, устанавливаемых на автомобили Subaru, Nissan, Honda, Fiat и Ford. Пока самым мощным серийным автомобилем с вариатором остается Honda Civic 1,6 ES VTEC Multi-Matic, но в ближайшее время, очевидно, жизнь предложит вариатору нечто большее, чем 114 л. с. и 140 Нм хондовского мотора. Fuji и VDT совместно с инженерами Porsche разработали и испытали несколько трансмиссий, способных работать с мощными двигателями рабочим объемом свыше трех литров! Модель Р884, снабженную ремнем шириной 30 мм (как у «формульного» вариатора), испытали на автомобилях Lancia Dedra (2,0 л, 113 л. е., 160 Нм), Volkswagen Coif VR6 (2,8 л, 170 л. е., 230 Нм) и Chrysler Voyager (3,3 л, 163 л. с. и 250 Нм). При разгоне 0—100 км/ч «в пол» Voyager с вариатором выигрывает у собрата с обычным гидромеханическим «автоматом» одну секунду! И ремень не рвется...

Новый перспективный вариатор оборудован электронным контроллером и может работать в трех режимах — спортивном, экономичном и... ручном (tipshift)! Этот режим «виртуальной механической КПП», разработанный Fuji Heavy Industries совместно со специалистами Porsche, имитирует работу «последовательных», секвентальных трансмиссий, выполненных на базе «автомата», как Tiptronic (Porsche, Audi), или на базе «механики» (BMW МЗ, Opel МАХХ). Но, в отличие от них, «ручному» вариатору можно задать любое число «передач» и любые передаточные отношения, что открывает для активного водителя массу перспектив. Хочешь наслаждаться привычной жесткой связью двигателя с ведущими колесами — передвигай рычаг селектора вариатора вправо и «гоняй» передачи вниз-вверх. Не нравится подбор чисел — поворотом рукоятки можно «сблизить» или «удлинить» передачи, а, может быть, даже влезть в программу и задать свои «расстояния» между передачами. Ну, а если устал, то можно вернуть рычаг в позицию Drive и спокойно катить, давая вариатору делать свое бесступенчатое дело. Красота...

ВАРИАТОР В КРУГУ РОДНЫХ И БЛИЗКИХ

Вообще клиноременный вариатор имеет довольно много общего с другими трансмиссиями. Есть дальняя родня по линии «бесступенчатости» — это уже упоминавшиеся фрикционные, импульсные и торовые вариаторы, ныне почившие в бозе, и гидрообъемная трансмиссия, которая встречается преимущественно на тяжелых спецтягачах.

Пакет фрикционов (слева) выполняет роль сцепления. Справа —масляный насос, подающий ATF-жидкость в гидропривод и для смазки ремня

Механизм вариатора Multi-Matic. Ведущий шкив (справа) раздвинут, и передаточное отношение сейчас максимально («первая передача»)

Планетарные шестерни и фрикционы — как у гидромеханической коробки передач

        Селектор вариатора CVTip. Левый ряд — как у «автомата» (Р, Я, N, D, D2),а правый — как у «секвентальных» КПП (+/-)

Вариатор ECVT, компонованный с 2,2литровым «оппозитником» baru и полноприводной трансмиссией

С обычными коробками передач вариатор имеет схожие узлы. Например, на холостом ходу при полной остановке вариатор необходимо отключить от двигателя. Сделать это можно или сухим однодисковым сцеплением (как в «механике», но управляемым электро- или гидроприводом), или с помощью гидротрансформатора, как в «автомате». Конструкторы пробуют разные варианты. Перспективная модель Р884 снабжена гидротрансформатором, вариатор Subaru Justy — сцеплением с электроприводом, а в трансмиссии MultiMatic, используемой на автомобилях Honda, роль сцепления играет пакет фрикционов на ведомом валу вариатора. То есть, когда машина стоит на месте, ремень вариатора крутится, но вхолостую, а при трогании с места нагружается включением фрикционов. Кстати, всеми фрикционами и тормозами планетарных передач, как и сдвижением-раздвижением половин вариаторных шкивов, сейчас заведует гидравлика, как и в гидромеханических «автоматах». Поэтому есть у вариаторов и потери на привод обязательного масляного насоса, и потери на барботаж масла. Ведь стальные сегменты ремня работают «помокрому», в масляной ванне с ATF-жидкостью.

Кпд серийных вариаторов пока не поднимается выше 85—92%, достигая заманчивого значения 95% лишь у опытных образцов. Но разработчики клиноременных вариаторов не сдаются, продолжая дело Ван Доорна и стремясь поднять кпд трансмиссии на небывалую высоту — туда, где сияет недоступная, но такая желанная цифра 100...

Л. ГОЛОВАНОВ Иллюстрации фирмпроизводителей,из архива Л. Шугурова и газеты Automobil Revue

   

focusello.ru