Устройство турбины. Устройство турбины


Устройство турбины | Двигатель прогресса

May 21, 2015

ТурбинаТурбины или турбокомпрессоры получили широкое применение практически на всех типов двигателей. Они используются на двигателях грузовых и легковых автомобилей, поездах, самолетах и двигателях строительной техники и оборудования.

Функция турбины, связывание энергии отработанных газов и преобразование его во вращательное движение. Вращаясь, рабочие части турбины нагнетают дополнительный воздух в камеру сгорания тем самым повышающая эффективность двигателя. Первоначально на двигателях использовались нагнетатели. Основное различие между турбиной и традиционным нагнетателем это устройство привода. Нагнетатель с механическим приводом от двигателя через ременную передачу. Турбину раскручивают выхлопные газы, без значительных энергетических потерь, поэтому ее эффективность значительно выше.

В большинстве поршневых двигателей подача топливно-воздушной смеси или ТВС (смесь топлива и атмосферного воздуха) в цилиндр двигателя происходит при нисходящем ходе поршня, когда создается область низкого давления. Процесс похож на забор жидкости в шприц. Соотношение количества рабочей смеси всасываемой в цилиндр к его объему называется объемным КПД. Цель турбины – улучшение объемной эффективности двигателя путем увеличения плотности всасываемого газа (обычно воздуха). Создавая давление воздуха на входе выше атмосферного можно получить объемный КПД более 100%. Двигатели с таким КПД способны вырабатывать большую мощность из-за снижения потерь при перемещении в двигателе.

Турбина состоит из двух корпусов (компрессора и самой турбины), двух лопастных колес установленных на одном валу, упорных подшипников и втулок скольжения. В качестве охлаждения используется вентилятор. Все комплектующие изготавливаются из жаропрочного металла. Точность изготовления и подгонки всех деталей очень высокая, поскольку механизм работает на больших оборотах при высоком давлении и температуре.

Размер и форма деталей турбины могут отличаться в зависимости от заданных рабочих характеристик в целом. Размер корпуса и рабочего колеса могут диктоваться количеством воздуха или выхлопных газов, которые необходимо пропускать через систему. Другими словами, чем больше объем двигателя, тем больше емкость потока газов, а соответственно необходимы рабочие колеса большего размера. Также может отличаться форма и количество лопастей на колесах. При необходимости, хотя и не во всех моделях, можно регулировать угол поворота лопастей на рабочем колесе.

turbokompaundВо время работы двигателя, выхлопные газы попадают в корпус турбины, заставляя вращаться лопастное колесо с большой скоростью. Это приводит в действие центробежный компрессор, установленный на одном валу с турбиной, который всасывает атмосферный воздух и сжимает его, прежде чем он попадает во впускной коллектор под давлением. Это увеличивает массу воздуха, поступающего в цилиндры на каждом такте впуска. Обычно производители адаптируют определенную модель турбины к определенному типу двигателя, стремясь к максимальной эффективности.

Другое применение турбины – увеличение эффективности топлива без увеличения мощности. Увеличение массы всасываемого воздуха способствует более полному сгоранию топлива. Чем полнее сгорит топливо, тем больше будет получено энергии, а, следовательно, при том же расходе топлива получается больший крутящий момент. Сжатый воздух имеет более высокую температуру, что также дает более высокую эффективность. Турбина, установленная на двигатель небольшого объема, позволяет экономить расход топлива, не теряя в мощности всего автомобиля в целом. Эта тенденция получила широкое применение в современном автомобилестроении.

lab-37.com

Устройство турбокомпрессора турбонаддува ДВС | Турбоком

Устройство современного турбокомпрессора:

1 - корпус подшипников - металлический корпус системы подшипников обеспечивает местоположения для плавающей системы подшипника вала турбины и компрессора, который может вращаться со скоростью до 170,000 оборотов/минут. Cложная геометрическая конструкция для охлаждения. Основные требования: качество обработки, жесткость, термостойкость;2 - турбинное колесо - установлено в корпусе турбины и соединено штифтом, который вращает крыльчатку компрессора. Покрыто никелевым сплавом. Сделано из прочных и стойких сплавов. Выдерживает температуры работы до 760 °C. Основные требования: стойкость к изнашиванию, к деформациям, к коррозии;3 - перепускной клапан - управляемый пневматическим приводом (см. рис. 1), при определенной величине давления наддува направляет часть отработавших газов в обход турбины, тем самым ограничивает давление наддува ДВС. Ограничение давления наддува осуществляют с целью защитить двигатель от перегрузки;4 - корпус (улитка) турбины - изготавливается из различных сортов сфероидированного чугуна, чтобы противостоять тепловому воздействию и разрушению. Как и крыльчатка, профиль улитки обработан до полного соответствия форме лопастей крыльчатки. Впускной фланец улитки турбины работает как установочная база для закрепления турбины, несущая нагрузку. Основные требования: ударопрочность, стойкость к окислению, жаропрочность, жаростойкость, легкость механической обработки;5 - масляные каналы;6 - вал ротора;7 - подшипник скольжения - изготовлен из специально разработанных бронзовых или медных сплавов. Специально разработанный производственный процесс предназначен, чтобы создать подшипники с необходимыми качествами термостойкости и износостойкости. Стопорные, упорные стальные кольца и масляные проточки изготавливаются особенно точно. Осевое давление поглощается бронзовым гидродинамическим подшипником осевого давления, расположенным в конец сборки вала. Точная калибровка обеспечивает равномерную нагрузку подшипника.8 - компрессорное колесо - выполнено из алюминиевых сплавов методом литья, на некоторых моделях крыльчаток, для очень тяжелой и продолжительной работы при больших температурах, лопасти изготавливаются из титана. Точные размеры лопастей крыльчатки и точная механическая обработка важны для нормальной работы компрессора. Расточка и полирование повышает коэффициенты сопротивления усталости. Крыльчатка расположена на сборке вала. Основные требования: высокое сопротивление усталости, растяжению, коррозии;9 - корпус (улитка) компрессора - отлита из алюминия. Используются различные сплавы для различных типов компрессоров. Используются как вакумное литье так "песочное" литье. Точная финальная обработка для соблюдения размеров и качества поверхностей, необходимые для нормальной работы турбины. Основные требования: прочность к ударным и механическим нагрузкам, высокое качество обработки и точные размеры;10 - пневмопривод перепускного клапана - управляет перепускным клапаном, для ограничения давления наддува и защиты двигателя от перегрузок.

Общее устройство турбокомпрессора

включает в себя основные части: корпус компрессора 1, компрессорное колесо 2, вал ротора 3, корпус турбины 4, турбинное колесо 5 и корпус подшипников с ротором в сборе.

- Корпуса турбины и компрессора в обиходе называют "улитки". Турбинный корпус связан с выпускным, а компрессорный - с впускным трубопроводами.- В корпусе подшипников установлен ротор в сборе, представляющий собой вал, на котором жестко закреплены турбинное и компрессорное колеса с лопастями. Ротор вращается на подшипниках скольжения. Они смазываются и охлаждаются моторным маслом, поступающим из системы смазки двигателя. Для снижения температуры корпуса в нем могут быть предусмотрены каналы подачи охлаждающей жидкости.

Работа турбокомпрессора происходит под воздействием потока отработавших газов, вращающих турбинное колесо и вал ротора. Установленное на том же валу компрессорное колесо нагнетает воздух во впускной трубопровод. На некоторых режимах работы мотора проявляют себяособенности турбонаддува:

- "Турбояма" ("турболаг") - задержка увеличения оборотов и мощности двигателя при резком нажатии на педаль акселератора ("газа"). Эффект связан с инерционностью системы - требуется время, чтобы ускорившийся поток выхлопных газов раскрутил турбину. Основной способ устранения - снижение размеров и массы вращающихся деталей для облегчения их быстрого раскручивания. Однако это ведет к снижению производительности турбокомпрессора и для сохранения необходимого давления наддува приходится увеличивать частоту вращения ротора или применять корпус турбины с изменяемым проходным сечением.- "Турбоподхват" - возникает при увеличении оборотов и скорости движения выхлопных газов после преодоления "турбоямы". Вследствие этого резко увеличивается давление наддува, создаваемого турбокомпрессором и, соответственно, мощность двигателя. Чтобы исключить перегрузку деталей кривошипно-шатунного механизма и детонацию (в бензиновых двигателях), необходимо такое же резкое ограничение давления наддува.

turbocom.com.ua

Устройство газовой турбины и компрессора газотурбинной установки



Устройство газовой турбины и компрессора газотурбинной установки

Простейшая турбина

Рис. Простейшая турбина

Газовая турбина представляет собой тепловой двигатель, в котором потенциальная энергия газа преобразуется в механическую энергию.

Продольный разрез простейшей газовой турбины показан на рисунке. На вал насажен диск 2, в котором укреплены рабочие лопатки 4. Вал с диском и лопатками в сборе называют ротором. Ротор турбины расположен внутри корпуса 5 и опирается на подшипники скольжения 6. Газ поступает к ротору турбины через сопла, образованные сопловыми лопатками 3. Сопла предназначены для преобразования потенциальной энергии газа в кинетическую. Внутри сопла давление газа уменьшается, а его скорость увеличивается. Перегородки, разделяющие сопла, называют сопловыми лопатками, а все сопловые лопатки, расположенные на одной окружности, — сопловой решеткой.

После сопловой решетки газ поступает к рабочим лопаткам. Промежутки между рабочими лопатками называют рабочими каналами, а все рабочие лопатки на диске — рабочей решеткой. Сопловую решетку и расположенную за ней по ходу газа рабочую решетку называют степенью. Рабочие лопатки изготовлены так, что каналы между ними имеют определенную форму. За счет изменения количества движения газа в рабочих каналах часть его энергии преобразуется в механическую, заставляя вращаться ротор. Ротор соединяется с потребителем механической энергии, которым на электрических станциях является электрический генератор, а на газоперекачивающих - нагнетатель газа.

Поступает газ в турбину через входной патрубок 9, а уходит из нее отработавший газ через выхлопной патрубок 8. Корпус турбины состоит из входного и выхлопного патрубков и той части, где расположены сопловые и рабочие лопатки. Таким образом корпус отделяет газ повышенного давления от окружающей среды. Однако в местах выхода ротора из корпуса имеются зазоры, и чтобы предотвратить утечку газа, в корпусе устанавливают уплотнения 7. Корпус турбины внутри или снаружи обязательно покрывают теплоизоляцией.

Компрессор служит для сжатия газа (воздуха) и повышения его энергии и температуры. При малых степенях сжатия в ГТУ в основном используют осевые компрессоры.

Простейший одноступенчатый компрессор состоит из тех же элементов, что и простейшая турбина. Так же как и турбина, компрессор имеет ротор состоящий из вала 1, диска 2 и рабочих лопаток 4. На внутренней поверхности корпуса компрессора располагаются направляющие лопатки 3. Решетку направляющих лопаток и следующую за ней рабочую решетку называют ступенью компрессора.

Воздух засасывается в компрессор через входной патрубок 9. Каналы между направляющими и рабочими лопатками имеют такую форму, что скорость воздуха в них уменьшается, а давление растет. Чтобы производилась работа сжатия воздуха, от турбины отбирается значительная часть мощности, необходимой для вращения ротора компрессора.

Выхлопной патрубок 8 (диффузор) служит для вывода воздуха из компрессора. Давление воздуха за диффузором значительно выше, чем во входном патрубке, и является наибольшим давлением в ГТУ.

Корпус компрессора состоит из входного патрубка, цилиндрической части, в которой расположены направляющие лопатки, и диффузора. Так же как в турбине, в местах выхода ротора из корпуса компрессора располагаются уплотнения 7. Турбины и компрессоры, имеющие одну ступень, называют одноступенчатыми. Турбины и компрессоры большой мощности с одной ступенью сконструировать обычно не удается. В этом случае на роторе приходится располагать несколько ступеней одну за другой. Такие турбины и компрессоры называют многоступенчатыми.



www.gigavat.com

Устройство паровой турбины

Паровая турбина состоит из следующих основных частей и механизмов:

Вращающейся частью турбины является ротор; по аналогии с электрическими машинами неподвижную часть ее называют иногда статором.

Рассмотрим отдельно устройство и назначение каждой из перечисленных выше частей и механизмов турбины.

фундаментная плита является опорой для корпуса турбины и статора генератора и создает между ними связь при которой правильное взаимное положение их не должно нарушаться.

Ввиду отсутствия в турбогенераторе возвратно-поступательно движущихся частей и связанной с ними неравномерности работы фундаментная плита может быть сравнительно легкой конструкции и обычно выполняется в виде сварной стальной или пустотелой чугунной рамы.

фундаментная плита турбогенератора небольшой мощности представляет собой цельную отливку; при средних и больших мощностях плита выполняется составной из двух и более (до пяти) частей.

Для облегчения веса агрегата иногда устанавливают общую плиту только под генератор и выпускной конец турбины; передний подшипник ее в этом случае покоиться на особой плите, связанной тягами с основной.

Внутреннее пространство пустотелой плиты иногда используется как резервуар для масла.

На (рис.1) изображена турбинная часть составной плиты; места установки лап корпуса обозначены цифрами 1, стойки переднего подшипника - 2; соединение со второй половиной плиты производится по фланцу 3-3

.фундаментная плита турбогенератораустановка фундаментной плиты паровой турбины

При монтаже турбины фундаментная плита устанавливается на стальные клинья, положенные на заранее приготовленный фундамент (рис.2). Перемещением клиньев добиваются горизонтальности положения плиты, для проверки чего к обработанным плоскостям последней прикладывают точный уровень (ватерпас). Составная из нескольких частей плита должна быть собрана и крепко стянута болтами еще до установки на клинья. После того как положение плиты точно выверено, фундаментные болты слегка затягивают и устанавливают на плиту стойки подшипников, корпус и ротор турбины. После окончательной выверки плиты, нагруженной этими деталями, ее положение фиксируют подливкой цементного раствора, вытекание которого предупреждается деревянным ограждением(опалубкой).

Перед заливкой нужно заменить клинья толстыми плоскими стальными подкладками, так как клинья имеют тенденцию разъезжаться при вибрации машины.

После затвердения щемента (обычно 5-6 дней) фундаментные болты могут быть затянуты окончательно.

Вместо клиньев для первоначальной выверки турбины иногда пользуются домкратами (джек-болтами).

Корпус турбины

Корпуса турбин почти всех конструкций выполняют разъемным в вертикальной плоскости. Сторона низкого давления крепится к фундаментной плите так, что определенная точка корпуса оказывается неподвижной (мертвой) при тепловых деформациях корпуса; сторона высокого давления обычно подвешена к переднему подшипнику и при удлинении корпуса от нагревания имеет возможность смещаться в осевом направлении по направляющим. Мертвую точку иногда называют фикс-пунктом.

Крепление корпуса к фундаментной плите должно быть выполнено так, чтобы расширение при нагревании происходило свободно, но при этом не нарушалось совпадение геометрических осей турбины и генератора.

Один из методов такого крепления приведен на (рис.3). Корпус опирается на фундаментную плиту стойкой 1 переднего подшипника и боковыми лапами 2, отлитыми вместе с выхлопным патрубком. При удлинении корпуса стойка переднего подшипника может скользить в осевом направлении по плите, причем продольная шпонка 3 удерживает его от смещения вбок. Со стороны низкого давления такую же функцию выполняет выступ 4, входящий в соответствующую выемку (паз)в поперечине плиты. Поперечные шпонки 5, заложенные между лапами и плитой, не допускают смещения лап вдоль оси турбины, но позволяют корпусу свободно расширяться в стороны. Таким образом, неподвижной (мертвой) точкой в корпусе турбины является точка пересечения оси проведенной через шпонки 5, с вертикальной плоскостью симметрии, проходящей через шпонки 3 и 4.

Передней стороной или стороной высокого давления турбины - называют сторону впуска пара

Для того чтобы лапа 2 (рис.4) корпуса могла скользить по плите 4 вдоль шпонок, под головкой болта 3, крепящего лапу, оставляют небольшой зазор; отверстие для болта в лапе делают больше диаметра болта на величину максимального перемещения лапы. Возможность свободного перемещения лапы можно в любой момент проверить по шайбе 1, которая должна свободно вращаться под головкой болта.

схема крепления корпуса турбины на фундаментной плитекрепление скользящей лапы турбины к фундаментной плитеверхняя часть стяжного болта фланцев корпуса турбины

 

Скользящие опорные поверхности и шпонки во избежание заеданий должны быть перед сборкой тщательно очищены и натерты графитом или смазаны ртутной мазью.

 

Изображенный на (рис 3) корпус имеет разъем в горизонтальной плоскости и разъем 7 в вертикальной плоскости. Фланцы корпуса в плоскостях разъема стягиваются болтами или шпильками. Затягивание гаек у болтов и шпилек небольшого размера производится ключом, удлиненным трубой до 2 метров длины. У турбин высокого давления затяжка болтов должна быть очень сильной во избежание просачивания пара. Поэтому болты, стягивающие фланцы таких турбин выполняют из хромоникелемолибденовой стали, хорошо переносящей действие высоких температур, располагают их очень близко друг к другу (рис. 6) и при затягивании применяют прогрев болтов.

схема корпуса давления турбины высокого давления

В настоящее время для прогрева применяют три способа:1) Автогенной горелкой с длинным не режущим пламенем, которое вводится в отверстие, просверленное в болте (рис .5) .Гайка болта должна быть предварительно затянута до отказа в холодном состоянии. После прогрева болт удлиняется и гайка может быть повернута еще на 1/10-1/6 оборота в зивисимости от длины болта.2) Электрическим нагревательным аппаратом (индукционным или с угольным электродом), вставленным в отверстие болта.3) Паром или горячим воздухом, струя которого направляется в сверление болта.

Между температурами корпуса турбины и болтов или шпилек, стягивающих его фланцы, всегда имеется разность, вызывающая дополнительные напряжения в материале болта или шпильки, особенно большие при пуске турбины. Температура шпилек, имеющих хороший контакт с корпусом по резьбе, всегда ближе к температуре корпуса, чем температуре болтов. С целью снижения разности температур корпуса и стяжных болтов заводы с успехом применяют засыпку алюминиевой пудры в зазоры между болтами. Этим путем удавалось снизить разность температур со 100 до 200 С.

Перед сборкой турбины фланцы горизонтального разъема корпуса тщательно очищают, подшабривают и покрывают мастикой, состоящей из графита на вареном льняном масле; иногда в состав мастики вводят сурик, белила и другие составляющие.

 

Корпус у турбины стараются придать по возможности простую форму. Размеры корпуса определяются размерами проточной части турбины. Часто корпус в начале имеет большой диаметр, соответствующий диаметру регулирующей ступени, затем, ограничивая камеру регулирующей ступени, он резко уменьшается и далее плавно увеличивается в соответствии с ростом диаметра ступеней турбины по мере расширения пара. Иногда диаметр корпуса, следуя за диаметрами проточной части, изменяется несколькими резко выраженными ступенями.

 

Во внутреннюю часть корпуса реактивной турбины, в пазы, выполненные обычно прямо в корпусе, устанавливают кольцевые ряды направляющих лопаток, образующие сопла.

В активных турбинах в корпус закладываются диафрагмы, разделяющие его на отдельные камеры, и направляющие аппараты в тех камерах, где есть ступени скорости.Не редко диафрагмы устанавливаются не в корпус, а в групповые кольцеобразные обоймы, которые затем вставляются в корпус.

Такая конструкция разгружает корпус от напряжений, возникающих при неравномерном расширении диафрагм от нагревания, и упрощает производство при выпуске машин разных мощностей, позволяя пользоваться корпусами одного размера.

 

Материалом для отливки корпусов паровых турбин служат чугун и сталь. Применение чугуна ограничено областью невысоких температур вследствие склонности чугуна «расти», то есть увеличиваться в объеме при высоких и переменных температурах. «Рост» чугуна неоднократно приводил к авариям вследствие нарушения установленных зазоров между деталями турбины.

С переходами на работу паром очень высокого давления и температуры турбостроение столкнулось с явлением «ползучести» (крипа) стали.

 

Под одновременным действием высокой температуры и постоянных растягивающих напряжений стальная отливка или паковка с течением времени получает все большую остаточную (пластическую) деформацию – ползет. Пластическая деформация при явлении ползучести возникает при напряжениях, значительно меньших придела текучести.

Для обычных углеродистых сталей ползучесть наблюдается начиная с температуры 380-400о С и выше.

Так как скорость ползучести для данного материала определяется температурой и напряжениями, то задачей конструктора является назначение таких размеров детали, при которых напряжения в ней будут таковы, что деталь может проработать заданный срок службы не выходя за установленные пределы деформации.

Задаваясь сроком службы детали, например 100 000 ч. И максимальной допустимой деформацией, например 0,5% длины детали, конструктор находит по результатам испытания металла на ползучесть то напряжение, при котором скорость ползучести не превышает 5*10-8мм/мм*ч.

Сопротивляемость стали ползучести зависит от химического состава металла и от технологии его обработки. Из присадок, вводимых в сталь, наиболее эффективно повышает сопротивление ползучести молибден, содержание которого в количестве 0,4-0,6% дает возможность применять сталь для температур до 550о С при приемлемых значениях рабочих напряжений.

Другое явление, с которым приходится встречаться в турбинах высокого давления, это релаксация деталей то есть самопроизвольное падение первоначально созданных напряжений в деталях (например, при затяжке болтов), которое заметно проявляется при длительном воздействии высоких температур. Процесс релаксации протекает при неизменной общей деформации напряженной детали. В результате деформации снижается натяг болтов, стягивающих фланцы корпусов турбин или фланцевые соединения паропроводов, и болты приходится периодически подтягивать.

В турбине, рассчитанной на высокие параметры пара, в наиболее тяжелых условиях находится корпус высокого давления.

Наибольшая трудность заключается в достижении длительной плотности стыка между половинами корпуса и в устройстве рациональной связи корпуса со стойками подшипников.

С возрастание параметров свежего пара быстро увеличивается толщина фланцев, необходимая для обеспечения плотности в разъеме корпуса высокого давления.

Для того чтобы обеспечить правильное взаимное положение подшипников и корпуса при удлинении последнего, точки опоры корпуса расположены на высоте его продольного разъема и насколько возможно близко к середине подшипников. Корпус с обоих концов опирается лапами на стойки подшипников и может скользить в вертикальных и горизонтальных направляющих стоек, что обеспечивает свободное расширение его в радиальных направлениях от центра вала без нарушения правильности совпадения осей турбины и генератора.

При проектировании турбин, рассчитанных на сверхвысокие параметры пара, толщина фланцев корпуса в.д. и диаметры стяжных болтов и шпилек могут получиться неприемлемо большими. В таких случаях хорошим конструктивным решением является применение корпусов с двойными стенками. В этом случае между внутренним корпусом, заключающем в себе проточную часть в. д., и наружным корпусом, обеспечивающим отсутствие утечек пара наружу, находится пар, отработавший в проточной части в. д. и имеющий значительно пониженный по сравнению со свежим паром давление.

Диафрагмы

Диафрагмы отливают из чугуна или отковывают из стали (для давлений выше 20 ата и температуре выше 250о С). Как правило, диафрагмы делают разъемными на две части; каждая половина устанавливается в соответствующую выточку корпуса турбины или в обойму.

Диафрагмы закрепляют в корпусе таким образом, чтобы они могли при нагревании свободно расширяться в радиальном направлении, не оказывая давления на стенки корпуса. Для этого их вставляют в выточки стенок корпуса с небольшими зазорами, обычно составляющими от 0,003 до 0,004 от диаметра диафрагмы в радиальном направлении и от 0,1 до 0,3 мм в осевом направлении.

Обода диафрагм перед установкой их в корпус необходимо смазать графитом.

Положение половинок диафрагмы фиксируется установкой шпонок 1 (рис. 9). Верхние половинки закрепляют так, чтобы можно было поднять верхнюю часть корпуса вместе с ними; это достигается установкой с каждой стороны шпонок 3, удерживающих диафрагмы от выпадения. Нижние половины диафрагм при удаленном роторе обычно свободно вынимаются из корпуса 2 кверху.

схема закрепления диафрагмы в корпусе турбиныверхняя часть корпуса небольшой активной турбины

На (рис. 10) изображен вид снизу верхней части (крышки) корпуса небольшой турбины; цифрой 2 отмечены диафрагмы, 1 – секция направляющего аппарата, 3 – закрепляющие винты диафрагм, 4 – уплотнение диафрагм, 5 – шпоночные канавки для шпонок, соединяющие верхнюю и нижнюю половины диафрагм.

Впуск пара в первых ступенях часто бывает парциальным, соответственно этому диафрагмы имеют сопла только в части своей окружности.

В последних ступенях подвод пара всегда полный – по всей окружности, на (рис. 11) изображены диафрагмы с парциальным и полным впуском пара.

Во избежание утечек пара вдоль вала в тех местах, где он проходит сквозь диафрагмы, последние снабжают лабиринтовыми уплотнениями, принцип действия и устройство которых рассмотрен ниже.

Вследствие большой поверхности диафрагмы полное давление пара на нее достигает очень большой величины даже при небольшой разности давлений между соседними камерами: естественно, что конструкция диафрагмы, особенно в первых ступенях, где температура и разность давлений сравнительно высоки, должна быть очень солидной, тем более, что даже небольшой прогиб диафрагмы может повлечь за собой серьезную аварию турбины.

Расчет диафрагм на прочность может быть произведен только с приближенной точностью. Поэтому новые конструкции диафрагм обычно испытывают на прогиб гидравлическим прессом на турбинных заводах.

 

Сопла первой ступени, чаще всего изготавливаются в виде составных фрезерованных сегментов (рис. 13) или сегментов, состоящих из лопаток, приваренных между отрезками бандажа и обоймы.

стальные фрезерованные сопла турбиныфото стальные фрезерованные сопла турбины

Сопла в чугунных диафрагмах образуются посредством заливки в тело диафрагмы соответственно изогнутых стальных лопаток (рис. 11). Сопла получают при этом трапецеидальное сечение и могут быть устроены расширяющимися или суживающимися в зависимости от расчетной скорости истечения пара.

диафрагмы турбины с парциальным и полным впуском пара

Неточная пригонка стыка лопаток в разъеме диафрагмы может вызвать вибрацию рабочих лопаток, так как в таком случае правильная форма соплового канала нарушается и каждая рабочая лопатка, проходя мим стыка, получает толчок. Ввиду большой трудности получения правильных стыков в диафрагмах с залитыми лопатками применяют диафрагмы с косыми стыками, так что разрезанные лопатки в разъемах отсутствуют.

В современных конструкциях турбин высокого давления чаще всего применяются сварные диафрагмы (рис. 16).места приварки лопатки турбины к бандажу

Направляющие лопатки 1, образующие сопла, закрепляются в двух полукольцевых бандажах – внутреннем 2 и наружном 3, в отверстия которых входят шипы лопаток, после чего привариваются к бандажам. Затем собранное полукольцо сопел приваривается к наружному ободу 4 и телу диафрагмы 5.

Сварные диафрагмы по своей жесткости превосходят диафрагмы с приклепанными лопатками, но уступают им в точности изготовления, что может вызвать небольшое увеличение расхода пара турбиной.

Сопловые венцы, набранные из фрезерованных лопаток, позволяют получить наиболее точные профили и гладкие поверхности сопловых каналов, что обеспечивает высокую экономичность турбины, но обходится дороже в изготовлении.

фото диафрагма турбины с полным подводом пара

par-turbina.ucoz.net