Датчики на наших авто, назначение и принцип работы. Авто датчики


Датчики на наших авто, назначение и принцип работы.

Датчик массового расхода воздуха (ДМРВ.

Назначение датчика. Принцип действия.

Датчик массового расхода воздуха предназначен для преобразования расхода воздуха, поступающего в двигатель, в напряжение постоянного тока.

Информация датчика позволяет определить режим работы двигателя и рассчитать цикловое наполнение цилиндров воздухом на установившихся режимах работы двигателя, длительность которых превышает 0, 1 секунды.Чувствительный элемент датчика построен на принципе терморезистивного анемометра и выполнен в виде платиновой нагреваемой нити. Нить нагревается электрическим током, а с помощью термодатчика и схемы управления датчика ее температура измеряется и поддерживается постоянной.Только в том случае, если через датчик поток воздуха увеличивается, то платиновая нить начинает охлаждаться, схема управления датчика увеличивает ток нагрева нити, пока температура ее не восстанавливается до первоначального уровня, таким образом величина тока нагрева нити пропорциональна расходу воздуха.Вторичный преобразователь датчика преобразует ток нагрева нити в выходное напряжение постоянного тока.С течением времени нить загрязняется, что приводит к смещению градуировочной характеристики датчика.Для очистки нити от грязи после выключения двигателя (при выполнении определенных условий) нить прожигается до 900-1000\xB0C импульсом тока в течение 1 секунды. Формирует импульс управления прожигом блок управления.

Для промывки никак нельзя использовать кетоны и эфиры. По трём причинам:1. растворяют компаунд.2. при высыхании очень сильно охлаждают кристалл. Он может "Лопнуть\Треснуть".3. растворяют "Маску" на кристалле (это отн. Не страшно, но в центре кристалла есть полимерная плёнка в окошке, похоже из полиэтилентерефталата, на которой тоже маска и металл. Напыление) если маска смоется, плёнка деформируется и оторвётся.

Не надо:- Лазить туда спичками\зубочистками и т. д.;.- Промывать всякими разъедателями типа виннса и карбоклина.

В общем, что остаётся?WD - 40. Там соляра и тяжёлые жирные кислоты. Моют хорошо, но надолго оставляют плёнку. Её надо смывать. Смывать нужно спиртами (этил / метил / изопропил) в смеси с дистиллированной водой (20% воды), или этил / бутил / пропил - ацетатами (Ч. Д. а. . они с водой нормально смешиваются (но хозтоварные грязные, и оставляют налёт. Думаю, что лучше кристалл поливать из шприца с тонкой иголкой. А сушить "Родным" вентилятором, включив его с компа. Ну, по крайней мере, искусственной смертью он не умрёт, а от естественной никто не застрахован. Хорошие результаты по промывке ДМРВ дает обычная промывка изопропиловым спиртом с предварительно разогретым, с помощью технического фена, до 60-70 градусов ДМРВ и промывочной жидкости.

Датчик положения дроссельной заслонки (ДПДЗ).

Датчик положения дроссельной заслонки установлен сбоку на дроссельном блоке на одной оси с приводом дроссельной заслонки. Датчик положения дроссельной заслонки считывает показания с положения педали "Газа". Основной враг датчика положения дроссельной заслонки - мойщики двигателей.Срок службы датчика положения дроссельной заслонки совершенно непредсказуем. Нарушения в работе датчика положения дроссельной заслонки проявляются в повышенных оборотах на холостом ходу, в рывках и провалах при малых нагрузках.

Датчик детонации.

Датчик детонации установлен на блоке двигателя между 2-м и 3-им цилиндрами. Существуют два типа датчика детонации - резонансный (бочонок) и широкополосный (таблетка. Датчик детонации разных типов не взаимозаменяемы.Датчик детонации - это надежный элемент, но требует регулярной чистки разъема. Принцип работы датчика детонации - как у пьезо - зажигалки. Чем сильнее удар, тем больше напряжение.Отслеживает детонационные стуки двигателя. В соответствии с сигналом датчика детонации контроллер устанавливает угол опережения зажигания. Есть детонация - более позднее зажигание. Отказ или обрыв датчика детонации проявляются в "Тупости" мотора и повышенному расходу топлива.Он представляет собой пустотелый шестигранный корпус с резьбовым выступом для вкручивания в ДВС. Внутри корпуса обычным винтиком прикручивается двухслойный пьезоэлемент, который и вырабатывает эдс при воздействии на него колебаний звуковой частоты через корпус датчика.Эти колебания с помощью пьезоэлемента в аудиосигнал преобразуются. Таким образом, с помощью ДД блок EFI "Слышит", что происходит в двигателе во время его работы. То есть, это своеобразный микрофон, а точнее, пьезокерамический звукосниматель (как на проигрывателях виниловых пластинок.Корпус по край залит специальным компаундом, по ощущению напоминающий хрупкую крошащуюся искусственную резину. Этот компаунд (на форуме его называют "Смолой") не только защищает пьезоэлемент от воздействия окружающей среды, но еще и создаёт специфическую АЧХ (амплитудно - частотную характеристику) сигнала, так как спектр ДД должен лежать в области 1400-6000 гц с центральной частотой в районе 2700 гц (примерная частота детонации.В том случае, если появляются детонационные процессы, то блок EFI автоматически изменяет угол опережения зажигания (уоз) до тех пор, пока детонационные процессы не сведутся к минимуму или вообще не ликвидируются.Таким образом, ДД является неотъемлемой частью цепей коррекции формирования и наиболее эффективного сжигания топливной смеси. Выход из строя ДД сопровождается появлением ошибки самодиагностики, детационными процессами в ДВС (при этом характерным так называемым "Звоном Пальцев"), худшей тягой, повышенным расходом топлива.

Датчик давления масла.

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик контроля уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

Датчик температуры охлаждающей жидкости (дож).

Датчик температуры охлаждающей жидкости установлен между головкой блока и термостатом. Датчик температуры охлаждающей жидкости имеет два контакта. Основное функциональное назначение датчика температуры охлаждающей жидкости - чем холоднее мотор, тем богаче топливная смесь.Конструктивно датчик температуры охлаждающей жидкости представляет собой термистор (резистор), сопротивление которого изменяется в зависимости от температуры. Типовые значения 100 гр. - 177 ом, 25 гр. - 2796 ом, 0 гр. - 9420 ом, - 20 гр. - 28680 ом. Температура охлаждающей жидкости почти на все характеристики управления двигателем влияет. Датчик температуры охлаждающей жидкости весьма надежен.Основные неисправности - нарушение электрического контакта внутри датчика, нарушение изоляции или обрыв проводов.Отказ датчика температуры охлаждающей жидкости - включение вентилятора на холодном двигателе, трудность запуска горячего мотора, повышенный расход топлива.

Датчик кислорода.

Датчик кислорода (лямбда зонд) установлен на приемной трубе глушителя. Серьезный, но весьма надежный электрохимический прибор.Задача датчика кислорода - определение наличия остатков кислорода в отработавших газах.Есть кислород - бедная топливная смесь, нет кислорода - богатая.Показания датчика кислорода используются для корректировки подачи топлива.Категорически запрещается использование этилированного бензина.Выход из строя датчика кислорода приводит к увеличению расхода топлива и вредных выбросов.

Датчик положения коленчатого вала (ДПКВ).

Датчик положения коленвала предназначен для формирования электрического сигнала при изменении углового положения специального зубчатого диска, установленного на коленвале двигателя.Датчик положения коленвала установлен около шкива коленвала и считывает сигналы по рискам. Это основной датчик, по показаниям которого определяется цилиндр, время подачи топлива и искры.Конструктивно датчик положения коленвала представляет собой кусок магнита с катушкой тонкого провода. Очень вынослив.Датчик положения коленвала работает в паре с зубчатым шкивом коленчатого вала. Отказ датчика - остановка двигателя. В лучшем случае ограничение оборотов двигателя в районе 3500 - 5000 об/ми.

Датчик фаз (распредвала ДКВ).

Устанавливается только на 16-тиклапанном двигателе. Информация для организации впрыска топлива в конкретный цилиндр используется.Отказ датчика переводит топливоподачу в попарно - параллельный режим, что приводит к резкому обогащению топливной смеси.Датчик фаз устанавливается на двигателе в верхней части головки блока цилиндров за шкивом впускного распредвала.На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра.

Регулятор холостого хода (РХХ), распредвала ДКВ.

Является устройством, которое необходимо в системе для стабилизации оборотов холостого хода двигателя. РХХ Представляет из себя шаговый электродвигатель с подпружиненной конусной иглой.Во время работы двигателя на холостом ходу, за счет изменения проходного сечения дополнительного канала подачи воздуха в обход закрытой заслонки дросселя, в двигатель поступает, необходимое для его стабильной работы, количество воздуха.Этот воздух учитывается датчиком массового расхода воздуха (ДМРВ) и, в соответствии с его количеством, контроллер осуществляет подачу топлива в двигатель через топливные форсунки.По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя и в соответствии с режимом работы двигателя управляет РХХ, таким образом добавляя или снижая подачу воздуха в обход закрытой дроссельной заслонки (см. Фото - 2 и фото - 3.

На прогретом до рабочей температуры двигателе контроллер поддерживает обороты холостого хода. В том случае, если же двигатель не прогрет, контроллер за счет РХХ увеличивает обороты и, таким образом, обеспечивает прогрев двигателя на повышенных оборотах коленвала. Данный режим работы двигателя позволяет начинать движение автомобиля сразу и не прогревая двигатель.Регулятор холостого хода установлен на корпусе дроссельной заслонки и крепится к нему двумя винтами.К сожалению, на некоторых автомобилях головки этих крепежных винтов могут быть рассверлены или винты посажены на лак, что может значительно усложнить демонтаж РХХ для его замены или прочистки воздушного канала. В таких случаях редко удается обойтись без демонтажа всего корпуса дроссельной заслонки.РХХ Является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода лампа "Check Engine" не загорается. Симптомы неисправностей РХХ во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа "Check Engine".К неисправностям регулятора холостого хода можно отнести следующие симптомы:- Неустойчивые обороты двигателя на холостом ходу, - самопроизвольное повышение или снижение оборотов двигателя, - остановка работы двигателя при выключении передачи, - отсутствие повышенных оборотов при запуске холодного двигателя, - снижение оборотов холостого хода двигателя при включении нагрузки (фары, печка и т. д. . для демонтажа регулятора холостого хода необходимо при выключенном зажигании отключить его четырехконтактный разъем и отвернуть два крепежных винта. Монтаж РХХ производят в обратной последовательности. Кроме того, уплотнительное кольцо на фланце следует смазать моторным маслом. Автор неизвестен.

interesnyefakty.com

Проверка основных датчиков автомобиля — Авто-Мото24.ру

Мы уже неоднократно говорили о том, что современный автомобиль – это система различных устройств, которые взаимодействуют между собой при помощи комплекса датчиков. Если один из них выходит из строя, то происходит сбой одной системы, которая повлечет неисправность другой и так далее. В этой статье мы рассмотрим основные датчики автомобиля и способы их диагностики своими руками.

Как проверить датчик АБС тестером

Итак, у вас загорелась лампа ABS на панели приборов, что же делать? В первую очередь важно понимать, что данный тип датчика проверяется по двум параметрам:

  1. Сопротивление;
  2. Напряжение.

На специализированных станциях проверка датчика ABS производится путем подключения осциллографа. При этом колеса проворачивается в ручном режиме, а на экране прибора видна синусоида. Она показывает зависимость частоты сигнала от мощности колебательных импульсов. Порой некоторые мастера производят замеры с использованием прибора Ц-20. На нем проверяющий может увидеть отклонения стрелки, а если прибор цифрового типа – то увеличение значения напряжения.

Диаграмма сигнала датчика АБС на осциллографе

В домашних условиях для испытания датчика ABS можно сделать специальное устройство, которое будет состоять из резистора от 900 Ом до 1,2 кОм, а также пары проводов. На концах проводов нужно разместить зажимы, которая смогут быть подключены к контактной группе самого датчика.

После этого нужно проверить каждое колесо. Вывернуть колеса в одну сторону, а потом в другую. При этом подсоединять наше сопротивление на датчики, включать зажигание и наблюдать за поведением сигнальной лампочки панели приборов. В тех случаях, когда лампочка погаснет при подключенном сопротивлении, то можно считать данный датчик неисправным. Согласитесь, данный способ весьма интересен, но трудоемкий, поэтому идем дальше.

Для проверки датчика АБС тестером, вам понадобиться любой мультиметр современного типа. В первую очередь проводим замеры сопротивления, которое для каждого автомобиля и его датчика может быть разным. Именно поэтому сперва нужно отыскать нормативные показания сопротивления для вашего автомобиля. Основная масса датчиков АБС вписывается в диапазон от 1,2 до 1,8 кОм. Когда тестер подключен к датчику и проводит замер сопротивления, попробуйте пошатать провода, идущие на сам датчик. При этом показания прибора не должны отклоняться, а если это происходит, то имеет место быть обрыв цепи.

Проверка датчика АБС

После этих замеров, отключайте контакты мультитестера и переводите его в режим измерения напряжения. Теперь нужно раскрутить колесо машины примерно до 40-50 оборотов в минуту. Далее следим за показаниями датчика, который будет производить напряжение. На всех датчиках оно равняется 2-м вольтам.

Конечно же, в идеальных условиях проверять датчик нужно подключением специального программного обеспечения, которое может указать на более точные параметры работы АБС и его неисправности.

Проверка датчика коленвала мультиметром

Датчик положения коленвала – это один из самых важных датчиков без которого ваш автомобиль попросту не заведется или движение на нем будет невозможным. Основная задача этого устройства – обеспечить синхронизацию между подачей топлива и моментом загорания искры на свечах.

Датчик коленвала

Итак, вы подозреваете неисправность ДПКВ. Первым делом вам нужно найти информацию по сопротивлению этого датчика для вашего автомобиля. После этого снять датчик и запомнить его положение по специальным меткам. Визуально оцените состояние рабочей части датчика. Она должна быть чистой и без механический повреждений. Если таковы имеются, то возможно отсутствует смысл в дальнейших действиях и датчик попросту нужно заменить.

Проверка датчика коленвала

После визуального осмотра проводите замеры сопротивления тестером. Для этого подключите его к рабочим контактам датчика и снимите показания. При исправном ДПКВ на экране прибора будут отображаться значения от 550 до 750 Ом. Настоятельно рекомендуем выяснить какие значения являются нормальными для вашего автомобиля.

Проверка датчика коленвала

Как проверить кислородный датчик

Кислородный датчик – современный прибор, который проверяет наличие остаточного кислорода в отработавших газах выпускного коллектора.

Проверка этого элемента сводится к двум действиям:

  1. Внешний осмотр;
  2. Замер тестером.

Визуально вы легко можете оценить повреждения и дефекты датчика кислорода. На нем не должно быть нагара или механических повреждений. Также смотрите подводную проводку, дабы она не имела замыкания проводом или их оплавление.

Исправный датчик кислорода

После того, как визуальным осмотром вам не удалось найти неисправности датчика, переходите к замерам сопротивления и напряжения на нем.Лямбда-зонд (кислородный датчик) отправляем на его рабочее место. Далее проводим знакомство с подводной колодкой, которая имеет четыре контакта. Назначение каждого из контакта смотрите на рисунке ниже.

Колодка датчика кислорода

Далее вставляем с обратной стороны колодки скрепки на которые будем подключать измерительные концы тестера. Первым делом вставляем скрепку в гнездо под первым номером. Вторая скрепка отправляется в гнездо номер два. Теперь подключаем вольтметр, а его положительный контакт к первой скрепке. Отрицательный соответственно на вторую скрепку.

Проверка сигнального напряжения ДК

Теперь нужно завести автомобиль и наблюдать за показаниями прибора. При пуске двигателя и первом времени его работы показания будут равны 0,1-0,2 вольта. После прогрева двигателя показания увеличатся до 0,9 вольт. Если же этого не произошло, то можно считать датчик неисправным.

Проверка нагревателя ДК

Допустим напряжение на датчике поднялось. Далее нужно проверить нагреватель. Снимаем скрепки и проверяем сопротивление на третьей и четвертой клеммах. Диапазон нормального сопротивления равен 10-40 Ом.

Проверка питания нагревателя ДК

Теперь можно проверить питание цепи нагревателя. Включаем зажигание, но не заводим двигатель. Контакт вольтметра ставим на четвертую клемму, а отрицательный контакт на вторую клемму. На экране мультитестера должно показывать напряжение равное напряжению аккумулятора авто. Если этого не произошло, то цепь питания неисправна.

Как проверить датчик детонации мультиметром

Датчик детонации топливной смеси представляет собой неразборный элемент внутри которого имеется пьезоэлектрический компонент. Когда в момент сгорания топлива происходит детонация, то она сопровождается некоторой ударной волной. Именно её засекает датчик детонации. В результате детонации на концах датчика появляется некоторый потенциал.

Строение датчика детонации

Данный тип датчика можно проверить на внутреннее сопротивление и напряжение. Сопротивление таких типов приборов равняется мегаомами. Следовательно вам нужно раздобыть книгу по эксплуатации вашего авто и найти нужные вам показания, а потом подключить омметр тестера на контакты и выяснить реальные данные.

Для проверки напряжение датчик полностью снимается с авто. Тестер переводится на режим милливольтов. Положительный щуп тестера подключаем на сигнальный провод, а отрицательный кладем на массу датчика в районе крепежного болта. После этого нужно аккуратно, с небольшим усилием ударить датчиком например об стол. В момент удара вольтметр зафиксирует наличие напряжение. Как правило, это 30-40 милливольт.

Как проверить датчик скорости

Для проверки этого датчика первым делом нужно осмотреть подводную колодку на следы износа, оплавления или просто повреждения. Также оцените внутреннее гнездо контактов. В некоторых автомобилях туда может попасть вода или другие фракции, что приведет к окислению.

Датчик скорости автомобиля

Если внешне все в порядке, то переходим к замерам. На большинстве датчиков указана полярность их контактов. Первым делом будем проверять датчик с вращательным элементом. Снимаем ДС и осматриваем полюса. Положительный контакт тестера подключаем на сигнальный контакт датчика. Отрицательный щуп монтируем на массу датчика. Далее вращаем рабочий элемент датчика и наблюдаем за экраном тестера. При вращении у вас должно появляться напряжение, а если его нет, то датчик можно считать неисправным.

Также можно вывесить одно из ведущих колес на домкрате и вращать за колесо. При этом второй помощник должен находится возле вольтметра и снимать показания. Принцип таков же, как описано выше, только его проводят для импульсных датчиков без движущегося элемента.

Проверка основных датчиков автомобиля

5 (100%) 1 vote

avto-moto24.ru

Датчики автомобильных электронных систем

Современные системы электронного автоматического управления раз­личными всевозможными техническими объектами, а также автомобильными бортовыми устройствами, имеют почти одинаковую похожую структуру.

Принцип работы различных датчиков ЭСАУ примерно одинаковый, - преобразование информации о значениях, которые преобразовываются из неэлектрических параметров в электрический сигнал — напряжение, ток, частоту, фазу и т. д. Полученные сигналы перевоплощаются в цифровой код и поступают в специальный микроконтроллер.

Микроконтроллер на основании значений этих сигналов и в соответствии с заложенным в него программным обеспечением принимает реше­ния, управляет через исполнительные механизмы (реле, соленоиды, электродвига­тели) объектом.

Возможность совершенствования автомобильных электронных систем во мно­гом зависит от наличия надежных, точных и недорогих датчиков.

В 60-х годах автомобили были оборудованы датчиками давления масла, уровня топлива, температуры, охлаждающей жидкости. Их выходы были подключены к стрелочным или ламповым индикаторам на щитке приборов.

В 70-х годах автомобильные компании начали бороться за уменьшение ко­личества токсичных выбросов из глушителя автомобиля — потребовались до­полнительные датчики для управления силовой установкой, которые необходи­мы для обеспечения нормальной работы электронного зажигания, системы впрыска топлива, трехкомпонентного нейтрализатора, для точного задания со­отношения воздух/топливо в рабочей смеси, для минимизации токсичности выхлопных газов.

В 80-х годах начали уделять больше внимания безопасности водителя и пасса­жиров — появились антиблокировочная система торможения (ABS) и воздушные мешки безопасности.

В силовом агрегате (в ДВС) датчики используются для измерения температуры и давления большинства текучих сред (температура всасываемого воздуха, абсо­лютное давление во впускном коллекторе, давление масла, температура охлажда­ющей жидкости, давление топлива в системе впрыска).

Почти ко всем движущимся частям автомобиля подключены датчики скорости или положения (скорость автомобиля, положение дроссельной заслонки, положе­ние коленчатого вала, положение распределительного вала, положение и скорость вращения вала в коробке переключения передач, положение клапана рециркуля­ции выхлопных газов).

Другие датчики определяют уровень детонации, нагрузку двигателя, пропуски воспламенения, содержание кислорода в выхлопных газах.

Есть датчики, которые определяют положение сидений.

В системе управления климатом (в климат-контроле) используются различные датчики в кондиционере для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом.

После появления антиблокировочной системы торможения и активной подвес­ки потребовались датчики для определения скорости вращения колес, высоты ку­зова по отношению к шасси, давления в шинах.

Датчики удара и акселерометры нужны для правильного функционирования фронтальных и боковых воздушных мешков безопасности. Для переднего пасса­жирского сиденья с помощью датчиков определяют наличие пассажира, его вес. Эта информация используется для оптимального наддува мешка безопасности на переднем сиденье. Другие датчики используются для боковых и потолочных воз­душных мешков безопасности, а также специальных воздушных мешков для за­щиты шеи и головы.

На современных автомобилях антиблокировочные системы торможения заме­няются более сложными и эффективными системами управления стабильностью движения автомобиля. Возникает необходимость в новых датчиках. Разрабатыва­ются и уже имеются датчики скорости вращения автомобиля вокруг вертикальной оси, датчики для предупреждения столкновений (например радарные), датчики для определения близости других автомобилей, датчики положения рулевого ко­леса, бокового ускорения, скорости вращения каждого колеса, крутящего момента на валу двигателя и т. д. Управление тормозной системой автомобиля становится частью более общей и эффективной системы электронного управления курсовой устойчивостью и стабильностью движения.

Из сказанного ясно, что сегодня датчики устанавливаются практически во всех системах автомобиля.

На рис. 2.1, а показано наиболее рациональное расположение различных дат­чиков на автомобиле.

► Датчики автомобильных электронных систем можно классифицировать по трем признакам: принципу действия, типу энергетического преобразования и ос­новному назначению.

По принципу действия датчики подразделяют на электро контактные, потенци­ометры ческие, оптические, оптоэлектронные, электромагнитные, индуктивные, магниторезистивные, магнитострикционные, фото- и пьезоэлектрические, датчи­ки на эффектах Холла, Доплера, Кармана, Зеебека, Вигоида.

В зависимости от энергетического преобразования (рис. 2.1, б) датчики (Д) бывают активными (поз. 2 на рис. 2.1, б), в которых выходной электрический сигнал (ЭС) возникает как следствие входного неэлектрического воздействия (НВ) без приложения сторонней электрической энергии за счет внутреннего физического эффекта (например фотоэффекта), и пассивными (поз. 3 на рис. 2.1, б), в которых электрический сигнал (ЭС) есть следствие модуляции внешней электрической энергии (ВЭ) управляющим неэлектрическим воздейст­вием (НВ). Например, потенциометрический датчик, показанный па рис. 2.1, б (поз. 5), является пассивным преобразователем угла поворота оси потенциомет­ра (чувствительного элемента ЧЭ) в электрический сигнал. Электрический сиг­нал (ЭС) появится на выходе потенциометра только после того, как на резистивную дорожку (П) будет подано внешнее напряжение (ВЭ). Следует отме­тить, что внутри датчика, посредством чувствительного элемента (ЧЭ), всегда имеет место внутреннее преобразование внешнего неэлектрического воздействия (НВ) в промежуточный неэлектрический сигнал (НС), что показано на рис. 2.1, б (поз. 1). Применительно к датчику угла поворота, угловое положение оси потенциометра является неэлектрическим сигналом (НС) на выходе чувствительного элемента. Этому неэлектрическому сигналу (НС) соответствует выходной электрический сигнал (ЭС) датчика, если поданное па резистивную дорожку (П) внешнее напряжение (ВЭ) постоянно (рис. 2.1, б, поз. 4). Линей­ная характеристика преобразования (рис. 2.1, б, поз. 6) может быть легко изме­нена на квадратичную, ступенчатую и любую нелинейную с заданной крутиз­ной, что достигается подбором конструктивных размеров (длины, ширины, тол­щины) резистивной дорожки.

Расположение датчиков на автомобиле

 Рис. 2.1, а. Расположение датчиков на автомобиле

1 — датчик конфигурации впускного коллектора с управляемой геометрией, 2 — датчик тахометра, 3 — датчик положения распределительного вала, 4 — датчик нагрузки двигателя, 5 — датчик положения коленчатого вала, 6 — датчик крутящего момента двигателя, 7 — датчик количества масла, 8 — датчик температуры охлаждающей жидкости, 9 — датчик скорости автомобиля,10 — датчик давления масла, 11— датчик уровня охлаждающей жидкости, 12 — радарный датчик системы торможения, 13 — датчик атмосферного давления, 14 — радарный датчик системы предотвращения столкновений, 15 — датчик скорости вращения ведущего вала коробки передач, 16 — датчик выбранной передачи в коробке передач, 17 — датчик давления топлива в рампе форсунок, 18 — датчик скорости вращения руля, 19 — датчик положения педали, 20 — датчик скорости вращения автомобиля относительно вертикальной оси, 21 — датчик противоугонной системы, 22 — датчик положения сиденья, 23 — датчик ускорения при фронтальном столкновении, 24 — датчик ускорения при боковом столкновении, 25 — датчик давления топлива в баке, 26 — датчик уровня топлива в баке, 27 — датчик высоты кузова по отношению к шасси, 28 — датчик угла поворота руля, 29 — датчик дождя или тумана, 30 — датчик температуры забортного воздуха, 31 — датчик веса пассажира, 32 — датчик кислорода, 33 — датчик наличия пассажира в сиденье, 34 — датчик положения дроссельной заслонки, 35 — датчик пропусков воспламенения, 36 — датчик положения клапана рециркуляции выхлопных газов, 37— датчик абсолютного давления в впускном коллекторе, 38 — датчик азимута, 39 — датчик скорости вращения колес, 40 — датчик давления в шинах.

Из приведенного примера ясно, что любой датчик всегда состоит, как мини­мум, из двух частей — из чувствительного элемента (ЧЭ), способного восприни­мать входное неэлектрическое воздействие (НВ), и из преобразователя (П) проме­жуточного неэлектрического сигнала (НС) от чувствительного элемента в выход­ной электрический сигнал (ЭС).

По назначению датчики классифицируются по типу управляющего неэлектри­ческого воздействия: датчики краевых положений, датчики угловых и линейных перемещений, датчики частоты вращения и числа оборотов, датчики относитель­ного или фиксированного положения, датчики механического воздействия, датчи­ки давления, датчики температуры, датчики влажности, датчики концентрации кислорода, датчик радиации и др.

► Датчики подключаются к ЭБУ или средствам индикации для передачи ин­формации о параметрах контролируемой среды. В автомобильных системах цепа и надежность имеют огромное значение и при прочих равных условиях всегда вы­бирают датчик с наименьшим числом соединителей. Если к датчику следует под­ключить 5—6 проводов (например, ЛДТ), целесообразно разместить микросхему обработки сигнала непосредственно на датчике и передавать данные контроллеру через последовательный интерфейс.

При подключении датчиков к ЭБУ следует иметь в виду, что шасси (масса) ав­томобиля не может быть использована в качестве измерительной земли. Между точкой подключения ЭБУ к массе и датчиком напряжение может падать до I В за счет токов силовых элементов по массе, что недопустимо как при штатной работе датчика, так и при его диагностике.

Подавляющее большинство датчиков из числа вышеперечисленных уже доста­точно широко используется на современных импортных и отечественных автомо­билях. Их устройство, работа и принципы диагностирования подробно описаны в [3] и [4|. Но есть и такие, которые появились относительно недавно и находятся на стадии внедрения в новейшие автомобильные системы. Описанию именно та­ких датчиков уделено наибольшее внимание в данной главе.

Датчики автомобильных электронных систем{jcomments on}

www.autoezda.com

Датчики на наших авто, назначение и принцип работы

Сегодня вы узнаете о том, какие датчики можно встретить в вашем автомобиле и для чего каждый из них предназначен.

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ).

Назначение датчика. Принцип действия.

Датчик массового расхода воздуха предназначен для преобразования расхода воздуха, поступающего в двигатель, в напряжение постоянного тока.Информация датчика позволяет определить режим работы двигателя и рассчитать цикловое наполнение цилиндров воздухом на установившихся режимах работы двигателя, длительность которых превышает 0,1 секунды.

Чувствительный элемент датчика построен на принципе терморезистивного анемометра и выполнен в виде платиновой нагреваемой нити. Нить нагревается электрическим током, а с помощью термодатчика и схемы управления датчика ее температура измеряется и поддерживается постоянной.

Если через датчик поток воздуха увеличивается, то платиновая нить начинает охлаждаться, схема управления датчика увеличивает ток нагрева нити, пока температура ее не восстанавливается до первоначального уровня, таким образом величина тока нагрева нити пропорциональна расходу воздуха.

Вторичный преобразователь датчика преобразует ток нагрева нити в выходное напряжение постоянного тока.

С течением времени нить загрязняется, что приводит к смещению градуировочной характеристики датчика.

Для очистки нити от грязи после выключения двигателя (при выполнении определенных условий) нить прожигается до 900—1000°C импульсом тока в течение 1 секунды. Формирует импульс управления прожигом блок управления.

Для промывки никак нельзя использовать кетоны и эфиры. По трём причинам:1. Растворяют компаунд.2. При высыхании очень сильно охлаждают кристалл. Он может "лопнуть\треснуть".3. Растворяют "маску" на кристалле (это отн. не страшно, но в центре кристалла есть полимерная плёнка в окошке, похоже из полиэтилентерефталата, на которой тоже маска и металл. напыление) Если маска смоется, плёнка деформируется и оторвётся.

Не надо:- лазить туда спичками\зубочистками и т.д.;- промывать всякими разъедателями типа Виннса и Карбоклина.

В общем, что остаётся?

WD-40. Там соляра и тяжёлые жирные кислоты. Моют хорошо, но надолго оставляют плёнку. Её надо смывать. Смывать нужно спиртами (этил / метил / изопропил) в смеси с дистиллированной водой (20% воды), или этил / бутил / пропил – ацетатами (Ч.Д.А.). Они с водой нормально смешиваются (но хозтоварные грязные, и оставляют налёт). Думаю, что лучше кристалл поливать из шприца с тонкой иголкой. А сушить "родным" вентилятором, включив его с компа. Ну, по крайней мере, искусственной смертью он не умрёт, а от естественной никто не застрахован. Хорошие результаты по промывке ДМРВ дает обычная промывка изопропиловым спиртом с предварительно разогретым, с помощью технического фена, до 60-70 градусов ДМРВ и промывочной жидкости.

ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ (ДПДЗ)

Датчик положения дроссельной заслонки установлен сбоку на дроссельном блоке на одной оси с приводом дроссельной заслонки. Датчик положения дроссельной заслонки считывает показания с положения педали "газа". Основной враг датчика положения дроссельной заслонки - мойщики двигателей.

Срок службы датчика положения дроссельной заслонки совершенно непредсказуем. Нарушения в работе датчика положения дроссельной заслонки проявляются в повышенных оборотах на холостом ходу, в рывках и провалах при малых нагрузках.

ДАТЧИК ДЕТОНАЦИИ

Датчик детонации установлен на блоке двигателя между 2-м и 3-им цилиндрами. Существуют два типа датчика детонации – резонансный (бочонок) и широкополосный (таблетка). Датчик детонации разных типов не взаимозаменяемы.

Датчик детонации - это надежный элемент, но требует регулярной чистки разъема. Принцип работы датчика детонации - как у пьезо-зажигалки. Чем сильнее удар, тем больше напряжение.Отслеживает детонационные стуки двигателя. В соответствии с сигналом датчика детонации контроллер устанавливает угол опережения зажигания. Есть детонация - более позднее зажигание. Отказ или обрыв датчика детонации проявляются в "тупости" мотора и повышенному расходу топлива.

Он представляет собой пустотелый шестигранный корпус с резьбовым выступом для вкручивания в ДВС. Внутри корпуса обычным винтиком прикручивается двухслойный пьезоэлемент, который и вырабатывает ЭДС при воздействии на него колебаний звуковой частоты через корпус датчика.

Эти колебания с помощью пьезоэлемента преобразуются в аудиосигнал. Таким образом, с помощью ДД блок EFI "слышит", что происходит в двигателе во время его работы. То есть, это своеобразный микрофон, а точнее, пьезокерамический звукосниматель (как на проигрывателях виниловых пластинок).

Корпус по край залит специальным компаундом, по ощущению напоминающий хрупкую крошащуюся искусственную резину. Этот компаунд (на форуме его называют "смолой") не только защищает пьезоэлемент от воздействия окружающей среды, но еще и создаёт специфическую АЧХ (амплитудно-частотную характеристику) сигнала, так как спектр ДД должен лежать в области 1400-6000Гц с центральной частотой в районе 2700Гц (примерная частота детонации).

Если появляются детонационные процессы, то блок EFI автоматически изменяет угол опережения зажигания (УОЗ) до тех пор, пока детонационные процессы не сведутся к минимуму или вообще не ликвидируются.

Таким образом, ДД является неотъемлемой частью цепей коррекции формирования и наиболее эффективного сжигания топливной смеси. Выход из строя ДД сопровождается появлением ошибки самодиагностики, детационными процессами в ДВС (при этом характерным так называемым "звоном пальцев"), худшей тягой, повышенным расходом топлива.

ДАТЧИК ДАВЛЕНИЯ МАСЛА

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик контроля уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ (ДОЖ)

Датчик температуры охлаждающей жидкости установлен между головкой блока и термостатом. Датчик температуры охлаждающей жидкости имеет два контакта. Основное функциональное назначение датчика температуры охлаждающей жидкости - чем холоднее мотор, тем богаче топливная смесь.

Конструктивно датчик температуры охлаждающей жидкости представляет собой термистор (резистор), сопротивление которого изменяется в зависимости от температуры. Типовые значения 100 гр. - 177 Ом, 25 гр. - 2796 Ом, 0 гр. - 9420 Ом, - 20 гр. - 28680 Ом. Температура охлаждающей жидкости влияет почти на все характеристики управления двигателем. Датчик температуры охлаждающей жидкости весьма надежен.

Основные неисправности - нарушение электрического контакта внутри датчика, нарушение изоляции или обрыв проводов.

Отказ датчика температуры охлаждающей жидкости - включение вентилятора на холодном двигателе, трудность запуска горячего мотора, повышенный расход топлива.

ДАТЧИК КИСЛОРОДА

Датчик кислорода (лямбда зонд) установлен на приемной трубе глушителя. Серьезный, но весьма надежный электрохимический прибор.

Задача датчика кислорода- определение наличия остатков кислорода в отработавших газах. Есть кислород - бедная топливная смесь, нет кислорода - богатая. Показания датчика кислорода используются для корректировки подачи топлива. Категорически запрещается использование этилированного бензина. Выход из строя датчика кислорода приводит к увеличению расхода топлива и вредных выбросов.

ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА (ДПКВ)

Датчик положения коленвала предназначен для формирования электрического сигнала при изменении углового положения специального зубчатого диска, установленного на коленвале двигателя.

Датчик положения коленвала установлен около шкива коленвала и считывает сигналы по рискам. Это основной датчик, по показаниям которого определяется цилиндр, время подачи топлива и искры.

Конструктивно датчик положения коленвала представляет собой кусок магнита с катушкой тонкого провода. Очень вынослив.

Датчик положения коленвала работает в паре с зубчатым шкивом коленчатого вала. Отказ датчика - остановка двигателя. В лучшем случае ограничение оборотов двигателя в районе 3500 - 5000 об/ми.

ДАТЧИК ФАЗ (распредвала ДКВ)

Устанавливается только на 16-тиклапанном двигателе. Информация используется для организации впрыска топлива в конкретный цилиндр.

Отказ датчика переводит топливоподачу в попарно-параллельный режим, что приводит к резкому обогащению топливной смеси.

Датчик фаз устанавливается на двигателе в верхней части головки блока цилиндров за шкивом впускного распредвала.

На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра.

РЕГУЛЯТОР ХОЛОСТОГО ХОДА (РХХ), распредвала ДКВ

Является устройством, которое необходимо в системе для стабилизации оборотов холостого хода двигателя. РХХ представляет из себя шаговый электродвигатель с подпружиненной конусной иглой. Во время работы двигателя на холостом ходу, за счет изменения проходного сечения дополнительного канала подачи воздуха в обход закрытой заслонки дросселя, в двигатель поступает, необходимое для его стабильной работы, количество воздуха.

Этот воздух учитывается датчиком массового расхода воздуха (ДМРВ) и, в соответствии с его количеством, контроллер осуществляет подачу топлива в двигатель через топливные форсунки. По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя и в соответствии с режимом работы двигателя управляет РХХ, таким образом добавляя или снижая подачу воздуха в обход закрытой дроссельной заслонки (см. Фото-2 и Фото-3).

На прогретом до рабочей температуры двигателе контроллер поддерживает обороты холостого хода. Если же двигатель не прогрет, контроллер за счет РХХ увеличивает обороты и, таким образом, обеспечивает прогрев двигателя на повышенных оборотах коленвала. Данный режим работы двигателя позволяет начинать движение автомобиля сразу и не прогревая двигатель.

Регулятор холостого хода установлен на корпусе дроссельной заслонки и крепится к нему двумя винтами. К сожалению, на некоторых автомобилях головки этих крепежных винтов могут быть рассверлены или винты посажены на лак, что может значительно усложнить демонтаж РХХ для его замены или прочистки воздушного канала. В таких случаях редко удается обойтись без демонтажа всего корпуса дроссельной заслонки.

РХХ является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода лампа "CHECK ENGINE" не загорается. Симптомы неисправностей РХХ во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа "CHECK ENGINE".

К неисправностям регулятора холостого хода можно отнести следующие симптомы:

- неустойчивые обороты двигателя на холостом ходу,- самопроизвольное повышение или снижение оборотов двигателя,- остановка работы двигателя при выключении передачи,- отсутствие повышенных оборотов при запуске холодного двигателя,- снижение оборотов холостого хода двигателя при включении нагрузки (фары, печка и т.д.).

Для демонтажа регулятора холостого хода необходимо при выключенном зажигании отключить его четырехконтактный разъем и отвернуть два крепежных винта. Монтаж РХХ производят в обратной последовательности. Кроме того, уплотнительное кольцо на фланце следует смазать моторным маслом.

titcat.ru

Какие датчики в современном автомобиле: принцип работы и признаки неисправности

Датчик массового расхода воздуха (ДМРВ)

Назначение ДМРВ

Датчик массового расхода воздуха (сокр. ДМРВ) предназначен для преобразования расхода воздуха, поступающего в двигатель, в напряжение постоянного тока.

Информация датчика позволяет определить режим работы двигателя и рассчитать цикловое наполнение цилиндров воздухом на установившихся режимах работы двигателя, длительность которых превышает 0,1 секунды.

Принцип действия ДМРВ

Чувствительный элемент датчика построен на принципе терморезистивного анемометра и выполнен в виде платиновой нагреваемой нити. Нить нагревается электрическим током, а с помощью термодатчика и схемы управления датчика ее температура измеряется и поддерживается постоянной.

Если через датчик поток воздуха увеличивается, то платиновая нить начинает охлаждаться, схема управления датчика увеличивает ток нагрева нити, пока температура ее не восстанавливается до первоначального уровня, таким образом, величина тока нагрева нити пропорциональна расходу воздуха.Вторичный преобразователь датчика преобразует ток нагрева нити в выходное напряжение постоянного тока.

Проблемы эксплуатации ДМРВ

С течением времени нить загрязняется, что приводит к смещению градуировочной характеристики датчика.Для очистки нити от грязи после выключения двигателя (при выполнении определенных условий) нить прожигается до 900—1000°C импульсом тока в течении 1 секунды. Импульс управления прожигом формирует блок управления.

Очистка ДМРВ

Для промывки никак нельзя использовать кетоны и эфиры по трём причинам:

  1. Растворяют компаунд.
  2. При высыхании очень сильно охлаждают кристалл. Он может "лопнуть\треснуть".
  3. Растворяют "маску" на кристалле (это относительно не страшно, но в центре кристалла есть полимерная плёнка в окошке, похоже из полиэтилентерефталата, на которой тоже маска и металлическое напыление) Плёнка выдержит, но если маска смоется, плёнка деформируется и оторвётся.

Также категорически не рекомендуется:

  • лазить туда спичками\зубочистками и т.д.
  • промывать агрессивными или едкими жидкостями типа Виннса и Карбоклина.
  • Большинство растворителей карбовые очистители "Абро" и "Hi-Gear".
  • ВЭЛВовские аэрозоли содержат ацетон (про кетоны написано выше) и этиловый эфир ¬- их не использовать.

В общем, что остаётся для очистки?WD-40. Там "соляра" и тяжёлые жирные кислоты. Моют хорошо, но надолго оставляют плёнку. Её надо смывать. Смывать нужно спиртами (этил / метил / изопропил) в смеси с дистиллированной водой (20% воды), или этил / бутил / пропил - ацетатами (Ч.Д.А.). Они с водой нормально смешиваются (но хозтоварные грязные, и оставляют налёт). Думаю, что лучше кристалл поливать из шприца с тонкой иголкой. А сушить "родным" вентилятором, включив его с компьютера. Ну, по крайней мере, искусственной смертью он не умрёт, а от естественной никто не застрахован. Хорошие результаты по промывке ДМРВ дает обычная промывка изопропиловым спиртом с предварительно разогретым, с помощью технического фена, до 60-70 градусов ДМРВ и промывочной жидкости.

Как продлить жизнь ДМРВ:

  1. Свовременная замена воздушного фильтра.
  2. Переодическая чистка корпуса воздушного фильтра и по возможности его патрубков.
  3. НЕ использование спортивных (нулевых) воздушных фильтров (особенно с пропитками).

Датчик положения дроссельной заслонки (ДПДЗ)

Датчик положения дроссельной заслонки установлен сбоку на дроссельном блоке на одной оси с приводом дроссельной заслонки. Датчик положения дроссельной заслонки считывает показания с положения педали "газа". Основной враг датчика положения дроссельной заслонки - мойщики двигателей.Срок службы датчика положения дроссельной заслонки совершенно непредсказуем.

Нарушения в работе датчика положения дроссельной заслонки проявляются в повышенных оборотах на холостом ходу, в рывках и провалах при малых нагрузках.

Датчик детонации (ДД)

Датчик детонации установлен на блоке двигателя между вторым и третьим цилиндрами. Существуют два типа датчика детонации – резонансный (внешне как бочонок) и широкополосный (как таблетка). Датчики детонации разных типов не взаимозаменяемы.

Датчик детонации - это надежный элемент, но требует регулярной чистки разъема. Принцип работы датчика детонации основан на пьезоэлектрическом эффекте (как у пьезозажигалки). Чем сильнее удар, тем больше напряжение.Отслеживает детонационные стуки двигателя. В соответствии с сигналом датчика детонации контроллер устанавливает угол опережения зажигания. Есть детонация - более позднее зажигание. Отказ или обрыв датчика детонации проявляются в "тупости" мотора и повышенному расходу топлива.Он представляет собой пустотелый шестигранный корпус с резьбовым выступом для вкручивания в ДВС. Внутри корпуса обычным винтиком прикручивается двухслойный пьезоэлемент, который и вырабатывает ЭДС при воздействии на него колебаний звуковой частоты через корпус датчика.

Эти колебания с помощью пьезоэлемента преобразуются в аудиосигнал. Таким образом, с помощью ДД блок EFI "слышит", что происходит в двигателе во время его работы. То есть, это своеобразный микрофон, а точнее, пьезокерамический звукосниматель (как на проигрывателях виниловых пластинок).

Корпус по край залит специальным компаундом, по ощущению напоминающий хрупкую крошащуюся искусственную резину. Этот компаунд (на форуме его называют "смолой") не только защищает пьезоэлемент от воздействия окружающей среды, но еще и создаёт специфическую АЧХ (амплитудно-частотную характеристику) сигнала, так как спектр ДД должен лежать в области 1400-6000Гц с центральной частотой в районе 2700Гц (примерная частота детонации).

Если появляются детонационные процессы, то блок EFI автоматически изменяет угол опережения зажигания (УОЗ) до тех пор, пока детонационные процессы не сведутся к минимуму или вообще не ликвидируются.

Таким образом, ДД является неотъемлемой частью цепей коррекции формирования и наиболее эффективного сжигания топливной смеси. Выход из строя ДД сопровождается появлением ошибки самодиагностики, детонационными процессами в ДВС (при этом характерным так называемым "звоном пальцев"), худшей тягой, повышенным расходом топлива.

Датчик давления масла

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик контроля уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

Датчик температуры охлаждающей жидкости (ДОЖ)

Датчик температуры охлаждающей жидкости установлен между головкой блока и термостатом. Датчик температуры охлаждающей жидкости имеет два контакта. Основное функциональное назначение датчика температуры охлаждающей жидкости - чем холоднее мотор, тем богаче топливная смесь.

Конструктивно датчик температуры охлаждающей жидкости представляет собой термистор (резистор), сопротивление которого изменяется в зависимости от температуры. Типовые значения 100 градусов - 177 Ом, 25 градусов - 2796 Ом, 0 градусов - 9420 Ом, -20 градусов - 28680 Ом. Температура охлаждающей жидкости влияет почти на все характеристики управления двигателем. Датчик температуры охлаждающей жидкости весьма надежен.

Основные неисправности - нарушение электрического контакта внутри датчика, нарушение изоляции или обрыв проводов.Отказ датчика температуры охлаждающей жидкости - включение вентилятора на холодном двигателе, трудность запуска горячего мотора, повышенный расход топлива.

Датчик кислорода

Датчик кислорода (лямбда-зонд) установлен на приемной трубе глушителя. Серьезный, но весьма надежный электрохимический прибор.

Задача датчика кислорода - определение наличия остатков кислорода в отработавших газах. Есть кислород - бедная топливная смесь, нет кислорода - богатая. Показания датчика кислорода используются для корректировки подачи топлива. Категорически запрещается использование этилированного бензина.

Выход из строя датчика кислорода приводит к увеличению расхода топлива и вредных выбросов.

Датчик положения коленчатого вала (ДПКВ)

Датчик положения коленчатого вала предназначен для формирования электрического сигнала при изменении углового положения специального зубчатого диска, установленного на коленвале двигателя.

Датчик положения коленвала установлен около шкива коленвала и считывает сигналы по рискам. Это основной датчик, по показаниям которого определяется цилиндр, время подачи топлива и искры.

Конструктивно датчик положения коленвала представляет собой кусок магнита с катушкой тонкого провода. Очень вынослив.

Датчик положения коленвала работает в паре с зубчатым шкивом коленчатого вала. Отказ датчика - остановка двигателя. В лучшем случае ограничение оборотов двигателя в районе 3500 - 5000 об/ми.

Датчик фаз (распредвала ДКВ)

Устанавливается только на 16-ти клапанном двигателе. Информация используется для организации впрыска топлива в конкретный цилиндр.Отказ датчика переводит топливоподачу в попарно-параллельный режим, что приводит к резкому обогащению топливной смеси.Датчик фаз устанавливается на двигателе в верхней части головки блока цилиндров за шкивом впускного распредвала.На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра.

Регулятор холостого хода (РХХ) (распредвала ДКВ)

РХХ является устройством, которое необходимо в системе для стабилизации оборотов холостого хода двигателя. РХХ представляет собой шаговый электродвигатель с подпружиненной конусной иглой.

Во время работы двигателя на холостом ходу, за счет изменения проходного сечения дополнительного канала подачи воздуха в обход закрытой заслонки дросселя, в двигатель поступает, необходимое для его стабильной работы, количество воздуха.

Этот воздух учитывается датчиком массового расхода воздуха (ДМРВ) и, в соответствии с его количеством, контроллер осуществляет подачу топлива в двигатель через топливные форсунки.

По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя и в соответствии с режимом работы двигателя управляет РХХ, таким образом, добавляя или снижая подачу воздуха в обход закрытой дроссельной заслонки (см. Фото-2 и Фото-3).

На прогретом до рабочей температуры двигателе контроллер поддерживает обороты холостого хода. Если же двигатель не прогрет, контроллер за счет РХХ увеличивает обороты и, таким образом, обеспечивает прогрев двигателя на повышенных оборотах коленвала. Данный режим работы двигателя позволяет начинать движение автомобиля сразу и не прогревая двигатель.

Регулятор холостого хода установлен на корпусе дроссельной заслонки и крепится к нему двумя винтами. К сожалению, на некоторых автомобилях головки этих крепежных винтов могут быть рассверлены или винты посажены на лак, что может значительно усложнить демонтаж РХХ для его замены или прочистки воздушного канала. В таких случаях редко удается обойтись без демонтажа всего корпуса дроссельной заслонки.

РХХ является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода лампа "CHECK ENGINE" не загорается. Симптомы неисправностей РХХ во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа "CHECK ENGINE".

К неисправностям регулятора холостого хода можно отнести следующие симптомы:

  • неустойчивые обороты двигателя на холостом ходу,
  • самопроизвольное повышение или снижение оборотов двигателя,
  • остановка работы двигателя при выключении передачи,
  • отсутствие повышенных оборотов при запуске холодного двигателя,
  • снижение оборотов холостого хода двигателя при включении нагрузки (фары, печка и т.д.).

Для демонтажа регулятора холостого хода необходимо при выключенном зажигании отключить его четырехконтактный разъем и отвернуть два крепежных винта. Монтаж РХХ производят в обратной последовательности. Кроме того, уплотнительное кольцо на фланце следует смазать моторным маслом.

avtolegko.ru

Виды и назначения автомобильных датчиков

Виды и назначения автомобильных датчиков

Практически все узлы современного автомобиля оснащены датчиками для контроля и информирования водителя об их состоянии.

Датчики уровней жидкостей в автомобиляхКонтроль над количеством технических жидкостей, а именно: моторного масла, стеклоомывающей и охлаждающей жидкостей выполняют датчики уровня. По принципу работы они разделяются на следующие:— поплавковые;— температурные;— емкостные и ультразвуковые.Наиболее давно и часто используются поплавковые датчики. Поплавок находится в контролируемой жидкости и способен перемещаться вместе с нею вверх либо вниз в зависимости от уровня. При падении уровня ниже допустимого срабатывает электрический контакт датчика, и приборная панель информирует водителя о возникшей неполадке.

Достоинством такого типа датчика является простота их изготовления и проверенная временем конструкция, что выражается в невысокой стоимости и легкости диагностирования неисправностей.Недостатки заложены в самом принципе работы – это вероятность застревания поплавка вследствие загрязнения или перекоса, а также невозможность контролировать и отображать фактический уровень жидкости (срабатывание происходит только при минимальном уровне).

Температурные датчики контроля за уровнем состоят из металлического корпуса, в который помещена платиновая нить. Корпус датчика погружен в контролируемую жидкость некоторой частью корпуса. Нить нагревается от протекающего через нее электрического тока, затем фиксируется скорость ее остывания. Скорость остывания зависит от количества жидкости, в которую погружен корпус датчика. Получив данные о времени остывания нити датчика, бортовой компьютер автомобиля по заранее заложенному алгоритму рассчитывает и отображает фактическое количество жидкости.

Достоинствами температурных датчиков являются надежность (за счет отсутствия движущихся частей), простота конструкции, невысокая стоимость прибора.

Недостатки температурных датчиков выражаются в необходимости измерения температуры контролируемой жидкости (для уточнения показаний). Информацию данных датчиков обрабатывает бортовой компьютер, что требует наличия надежного контакта в цепи от датчика к компьютеру. Точность измерений обычно составляет 5-15%.

speedometer

Емкостные и ультразвуковые датчики контроля за уровнем жидкости обычно устанавливают на автомашины премиум-класса и спортивные авто. Они представляют собой сложные устройства, часто с собственным микрокомпьютером, позволяют точно измерять уровень, а зачастую определяют и качество жидкости.

Датчики состояния тормозных накладокТормозные накладки в процессе эксплуатации изнашиваются, и возникает необходимость их замены. Скорость износа зависит от многих факторов: стиля вождения, состояния дорожного покрытия, качества и материала изготовления накладок, состояния подвески.

Сильный износ тормозной накладки приводит к износу тормозного диска, увеличению времени торможения и длины тормозного пути, что значительно увеличивает риск попадания в ДТП.

Для контроля за состоянием тормозных накладок служат датчики износа. В зависимости от типа автомобиля их количество варьируется от одного до четырех. Распространение получила установка двух датчиков: один на переднем колесе, второй на заднем. Датчики износа устанавливаются на внешней тормозной накладке.Конструктивно датчик износа состоит из пластикового корпуса и сердечника из мягкого металла. Сердечник датчика устанавливается на уровне предельного износа тормозной накладки. При касании тормозного диска сердечником совершается замыкание цепи, и на приборную панель выводится сигнал о неисправности. Для снижения количества ложных срабатываний из-за попадания влаги, химических реагентов сигнал датчика, как правило, обрабатывается бортовым компьютером.

Последнее поколение датчиков устанавливается непосредственно в тормозную накладку и способно определять примерную степень износа. При этом сначала выводится предупреждающий сигнал о величине износа тормозных накладок, а затем аварийный сигнал.

Датчики контроля дверейДля контроля состояния дверей автомобиля и обеспечения подсветки салона, багажника при открытии применяются датчики состояния.

Как правило, используют концевые выключатели, которые при закрытой двери нажаты и их цепь разомкнута. При открывании двери шток концевого выключателя освобождается, и контакт датчика замыкается. Длина штока подобрана таким образом, чтобы при неплотно закрытой двери контакт датчика оставался замкнутым. Информация о состоянии датчиков контроля двери или непосредственно выводится на панель приборов, или обрабатывается бортовым компьютером.

Подсветка салона и багажника включается реле, которое управляется контактом датчика состояния. Задержка по времени выключения, плавное выключение света реализуется специализированными реле: таймерами и димерами.

Подпишись на полезные статьи!

gearavto.ru

Датчики на наших авто, назначение и принцип работы

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ).

Назначение датчика. Принцип действия.

Датчик массового расхода воздуха предназначен для преобразования расхода воздуха, поступающего в двигатель, в напряжение постоянного тока. Информация датчика позволяет определить режим работы двигателя и рассчитать цикловое наполнение цилиндров воздухом на установившихся режимах работы двигателя, длительность которых превышает 0,1 секунды. Чувствительный элемент датчика построен на принципе терморезистивного анемометра и выполнен в виде платиновой нагреваемой нити. Нить нагревается электрическим током, а с помощью термодатчика и схемы управления датчика ее температура измеряется и поддерживается постоянной. Если через датчик поток воздуха увеличивается, то платиновая нить начинает охлаждаться, схема управления датчика увеличивает ток нагрева нити, пока температура ее не восстанавливается до первоначального уровня, таким образом величина тока нагрева нити пропорциональна расходу воздуха. Вторичный преобразователь датчика преобразует ток нагрева нити в выходное напряжение постоянного тока. С течением времени нить загрязняется, что приводит к смещению градуировочной характеристики датчика. Для очистки нити от грязи после выключения двигателя (при выполнении определенных условий) нить прожигается до 900—1000°C импульсом тока в течении 1 секунды. Формирует импульс управления прожигом блок управления.

Для промывки никак нельзя использовать кетоны и эфиры. По трём причинам: 1. Растворяют компаунд. 2. При высыхании очень сильно охлаждают кристалл. Он может \»лопнуть\\треснуть\». 3. Растворяют \»маску\» на кристалле(это отн. не страшно, но в центре кристалла есть полимерная плёнка в окошке, похоже из полиэтилентерефталата,на которой тоже маска и металл. напыление) Плёнке пофиг, но если маска смоется, плёнка деформируется и оторвётся.

Не надо: — лазить туда спичками\\зубочисками и прочими тампаксами — промывать всякими разъедателями типа Виннса и Карбоклина. — Большинство растворителей остаКарбовые очистители \»Абро\» и \»Hi-Gear\». — ВЭЛВовские аэрозоли содержат ацетон (про кетоны я уже сказал) и этиловый эфир, их не использовать.

В общем, что остаётся? WD-40. Там соляра и тяжёлые жирные кислоты. Моют хорошо, но надолго оставляют плёнку. Её надо смывать. Смывать нужно спиртами (этил / метил / изопропил) в смеси с дистиллированной водой(20% воды), или этил / бутил / пропил — ацетатами(Ч.Д.А.). Они с водой нормально смешиваются (но хозтоварные грязные, и оставляют налёт). Думаю, что лучше кристалл поливать из шприца с тонкой иголкой. А сушить \»родным\» вентилятором, включив его с компа. Ну, по крайней мере, искусственной смертью он не умрёт, а от естественной никто не застрахован.:о) Хорошие результаты по промывке ДМРВ дает обычная промывка изопропиловым спиртом с предварительно разогретым, с помощью технического фена, до 60-70 градусов ДМРВ и промывочной жидкости.

ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ (ДПДЗ)

Датчик положения дроссельной заслонки установлен сбоку на дроссельном блоке на одной оси с приводом дроссельной заслонки. Датчик положения дроссельной заслонки считывает показания с положения педали \»газа\». Основной враг датчика положения дроссельной заслонки — мойщики двигателей. Срок службы датчика положения дроссельной заслонки совершенно непредсказуем. Нарушения в работе датчика положения дроссельной заслонки проявляются в повышенных оборотах на холостом ходу, в рывках и провалах при малых нагрузках.

ДАТЧИК ДЕТОНАЦИИ

Датчик детонации установлен на блоке двигателя между 2-м и 3-им цилиндрами. Существуют два типа датчика детонации – резонансный ( бочонок ) и широкополосный ( таблетка ). Датчик детонации разных типов не взаимозаменяемы. Датчик детонации — это надежный элемент, но требует регулярной чистки разъема. Принцип работы датчика детонации как у пьезо зажигалки. Чем сильнее удар, тем больше напряжение. Отслеживает детонационные стуки двигателя. В соответствии с сигналом датчика детонации контроллер устанавливает угол опережения зажигания. Есть детонация — более позднее зажигание. Отказ или обрыв датчика детонации проявляются в \»тупости\» мотора и повышенному расходу топлива. Он представляет собой пустотелый шестигранный корпус с резьбовым выступом для вкручивания в ДВС. Внутри корпуса обычным винтиком прикручивается двухслойный пьезоэлемент, который и вырабатывает ЭДС при воздействии на него колебаний звуковой частоты через корпус датчика. Эти колебания с помощью пьезоэлемента преобразуются в аудиосигнал. Таким образом, с помощью ДД блок EFI \»слышит\», что происходит в двигателе во время его работы. То есть, это своеобразный микрофон, а точнее, пьезокерамический звукосниматель (как на проигрывателях виниловых пластинок). Корпус по край залит специальным компаундом, по ощущению напоминающий хрупкую крошащуюся искусственную резину. Этот компаунд (на форуме его называют \»смолой\») не только защищает пьезоэлемент от воздействия окружающей среды, но еще и создаёт специфическую АЧХ (амплитудно-частотную характеристику) сигнала, так как спектр ДД должен лежать в области 1400-6000Гц с центральной частотой в районе 2700Гц (примерная частота детонации). Если появляются детонационные процессы, то блок EFI автоматически изменяет угол опережения зажигания (УОЗ) до тех пор, пока детонационные процессы не сведутся к минимуму или вообще не ликвидируются. Таким образом, ДД является неотъемлемой частью цепей коррекции формирования и наиболее эффективного сжигания топливной смеси. Выход из строя ДД сопровождается появлением ошибки самодиагностики, детационными процессами в ДВС (при этом характерным так называемым \»звоном пальцев\»), худшей тягой, повышенным расходом топлива.

ДАТЧИК ДАВЛЕНИЯ МАСЛА

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик контроля уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ (ДОЖ)

Датчик температуры охлаждающей жидкости установлен между головкой блока и термостатом. Датчик температуры охлаждающей жидкости имеет два контакта . Основное функциональное назначение датчика температуры охлаждающей жидкости — чем холоднее мотор, тем богаче топливная смесь. Конструктивно датчик температуры охлаждающей жидкости представляет собой термистор ( резистор ), сопротивление которого изменяется в зависимости от температуры. Типовые значения 100 гр. — 177 Ом, 25 гр. — 2796 Ом, 0 гр. — 9420 Ом, — 20 гр. — 28680 Ом. Температура охлаждающей жидкости влияет почти на все характеристики управления двигателем. Датчик температуры охлаждающей жидкости весьма надежен. Основные неисправности — нарушение электрического контакта внутри датчика, нарушение изоляции или обрыв проводов . Отказ датчика температуры охлаждающей жидкости — включение вентилятора на холодном двигателе, трудность запуска горячего мотора, повышенный расход топлива.

ДАТЧИК КИСЛОРОДА

Датчик кислорода(лямбда зонд) установлен на приемной трубе глушителя. Серьезный, но весьма надежный электрохимический прибор. Задача датчика кислорода- определение наличия остатков кислорода в отработавших газах. Есть кислород — бедная топливная смесь, нет кислорода — богатая. Показания датчика кислорода используются для корректировки подачи топлива. Категорически запрещается использование этилированного бензина. Выход из строя датчика кислорода приводит к увеличению расхода топлива и вредных выбросов.

ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА (ДПКВ)

Датчик положения коленвала предназначен для формирования электрического сигнала при изменении углового положения специального зубчатого диска, установленного на коленвале двигателя. Датчик положения коленвала установлен около шкива коленвала и считывает сигналы по рискам. Это основной датчик, по показаниям которого определяется цилиндр, время подачи топлива и искры. Конструктивно датчик положения коленвала представляет собой кусок магнита с катушкой тонкого провода. Очень вынослив. Датчик положения коленвала работает в паре с зубчатым шкивом коленчатого вала. Отказ датчика — остановка двигателя. В лучшем случае ограничение оборотов двигателя в районе 3500 — 5000 об/ми.

ДАТЧИК ФАЗ (распредвала ДКВ)

Устанавливается только на 16 — ти клапанном двигателе. Информация используется для организации впрыска топлива в конкретный цилиндр. Отказ датчика переводит топливоподачу в попарно-параллельный режим, что приводит к резкому обогащению топливной смеси. Датчик фаз устанавливается на двигателе в верхней части головки блока цилиндров за шкивом впускного распредвала. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра.

РЕГУЛЯТОР ХОЛОСТОГО ХОДА (РХХ)(распредвала ДКВ)

Является устройством, которое необходимо в системе для стабилизации оборотов холостого хода двигателя. РХХ представляет из себя шаговый электро-двигатель с подпружиненной конусной иглой. Во время работы двигателя на холостом ходу, за счет изменения проходного сечения дополнительного канала подачи воздуха в обход закрытой заслонки дросселя, в двигатель поступает, необходимое для его стабильной работы, количество воздуха. Этот воздух учитывается датчиком массового расхода воздуха (ДМРВ) и, в соответствии с его количеством, контроллер осуществляет подачу топлива в двигатель через топливные форсунки. По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя и в соответствии с режимом работы двигателя управляет РХХ,таким образом добавляя или снижая подачу воздуха в обход закрытой дроссельной заслонки (см. Фото-2 и Фото-3).

На прогретом до рабочей температуры двигателе контроллер поддерживает обороты холостого хода. Если же двигатель не прогрет, контроллер за счет РХХ увеличивает обороты и, таким образом, обеспечивает прогрев двигателя на повышенных оборотах коленвала. Данный режим работы двигателя позволяет начинать движение автомобиля сразу и не прогревая двигатель. Регулятор холостого хода установлен на корпусе дроссельной заслонки и крепится к нему двумя винтами. К сожалению, на некоторых автомобилях головки этих крепежных винтов могут быть рассверлены или винты посажены на лак, что может значительно усложнить демонтаж РХХ для его замены или прочистки воздушного канала. В таких случаях редко удается обойтись без демонтажа всего корпуса дроссельной заслонки. РХХ является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода лампа \»CHECK ENGINE\» не загорается. Симптомы неисправностей РХХ во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа \»CHECK ENGINE\». К неисправностям регулятора холостого хода можно отнести следующие симптомы: -неустойчивые обороты двигателя на холостом ходу, -самопроизвольное повышение или снижение оборотов двигателя, -остановка работы двигателя при выключении передачи, -отсутствие повышенных оборотов при запуске холодного двигателя, -снижение оборотов холостого хода двигателя при включении нагрузки (фары, печка и т.д.).

Для демонтажа регулятора холостого хода необходимо при выключенном зажигании отключить его четырехконтактный разъем и отвернуть два крепежных винта. Монтаж РХХ производят в обратной последовательности. Кроме того, уплотнительное кольцо на фланце следует смазать моторным маслом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

Pinterest

No tags for this post.

new-lifehuck.ru