Современные турбонаддувные двигатели. Как работает турбина на бензиновом двигателе


Как работает турбина на авто

Содержание статьи:

Считается, что престижный автомобиль просто обязан быть динамичным.  Да и любому спешащему автолюбителю хочется победить время скоростью своего коня, без глобальных на это затрат топлива. И вот сегодня, в 21 веке, под массивным капотом скрыт скромный четырехцилиндровый рядный блок, разгоняющий до 100 км/час даже достаточно массивную машину за несколько секунд. А все потому, что у него есть турбина — приспособление, которое применяется в моторах с турбонаддувом.

Принцип действия турбины

Турбина, как инженерное творение было придумано и разработано в 1905 году швейцарцем Альфредом Буше. Он получил патент на компрессор, который приводился в действие за счет отработанных газов автомобиля. Целью его долгого пути развития и усовершенствования является повышение топливной эффективности.Как работает турбина на авто

Чтобы увеличить мощность при уменьшении рабочего объема двигателя, нужно в той же камере сгорания сжечь больше бензина. С химической точки зрения, сгорание – это реакция окисления, окислителем в которой считается кислород. Нужно умудриться забрать с внешней атмосферы больше воздуха. То есть, для решения проблемы, необходимо повысить количество топливно-воздушной смеси, подаваемую на двигатель.

Суть же турбины вот в чем: выпускающиеся под давлением из выпускного коллектора газы, попадают в систему выхлопа, вращая, как крылья мельницы, колесо с лопатками — турбину. В то же время, закрепленный с ней на одном валу, компрессор начинает нагнетать в цилиндры дополнительный воздух, тем самым повышая так недостающее количество окислителя в камере сгорания. Число оборотов турбины тесно связано с давлением газов в, так называемой, горячей части. Управлять ими можно при помощи специального клапана. В холодной части работает нагнетатель, доставляющий дополнительную порцию атмосферного воздуха во впускной коллектор. То есть, можно условно разделить турбонагнетатель на ротор и компрессор. Если потребление окислителя резко сокращается, например, при сбросе газа, когда ротор еще инерционно крутится, излишний воздух удаляется через специальный клапан впускного коллектора, называемый «блоу оф».

В отличие от механических нагнетателей в турбонаддуве нет отбора мощности от двигателя, а значит, КПД такой конструкции должен быть намного выше.

Этот круговорот вторичного использования энергии продуктов сгорания топлива эффективно повышает мощность двигателя.

Проблемы турбированных двигателей и их решение

И даже в работе такого гениального изобретения, как турбина, есть свои скрытые негативные стороны.

А дело в том, что пока мотор не раскрутится до определенных оборотов, турбина практически не работает. А начав работать, превращает смирный атмосферный мотор в ревущего хищника. Это, как два двигателя в одном: если едешь не торопясь, он ведет себя просто как маломощный мотор. Но, когда нужна дополнительная мощность, например, при обгоне, турбонаддув действует как пинок, ускоряющий автомобиль, будто под капотом находится мотор большего объема. Другими словами, на малых оборотах количество газов совсем небольшое, и их скорость и давление также мало. Поэтому и турбина раскручивается до совсем небольших оборотов, и толку от компрессора с его подачей дополнительного воздуха почти равно нулю. В результате этого непредвиденного дефекта на низах мотора отсутствует нужная мощность. И только примерно с 4000 об/мин турбонаддув «выстреливает».

Обороты, при которых турбина и компрессор начинают работать эффективно, называются «турбо-зоной», а процесс преодоления более низкого диапазона оборотов закрепилось в названии «турбо-яма».

Для борьбы с таким дефектом можно поставить две турбины вместо одной, по одному нагнетателю на каждую долю блока цилиндров. Такую схему часто называют «би-турбо». Или установить механический нагнетатель, помогающий мотору на низких оборотах. Если турбина все-таки одна, то современные многоступенчатые трансмиссии позволяют передать передаточные числа таким образом, что турбо-яма в принципе не ощущается, фактически мотор не покидает турбо-зоны. Исключение составляет только момент, когда нужно двинуться с места.Автомобильная турбина

Еще один не оставленный без внимания нюанс – это то, что турбина, компрессор и все его компоненты работают в зоне самых высоких температур, так как выхлопные газы достигают температуры в 2500-3000 градусов С. Кроме того, так как турбокомпрессор нагнетает воздух двигателя под давлением, плюс еще давление, создаваемое клапанами в цилиндре, воздух в камерах сильно нагревается. Его температура может подниматься до температур, достаточных для возникновения детонации. Поэтому в комплексе с турбиной под капот устанавливают специальный охладитель, называемый «интеркуллер», обладающий также дополнительными положительными свойствами. В основном моторы с турбонагнетателем рассчитывают только на высокооктановый бензин.

Турбина на авто – и мечта, и реальность

Долгое время турбонаддув оставался исключительно дизельным явлением. Однако рост цен на нефть быстро вернул инженеров к мысли о необходимости срочной модернизации всей линейки двигателей. За что нам и можно сказать спасибо! Ведь это и привело к возможности любого желающего стать обладателем скоростного авто, всего лишь приобретя комплекс с турбонаддувом, полностью готовый к эксплуатации, с уже устраненными проблемами, наполненный сплошными плюсами и позволяющий получать лишь удовольствие от езды.

Турбированное авто

С появлением на рынках турбин, появилось множество других нововведений, таких как подшипники с керамическими шариками, которые сами по себе заполнены смазкой, и другие. Также турбонаддув помог в решении такой проблемы, как снижение рабочего объема двигателей при сохранении необходимой мощности. Что, в свою очередь, уменьшает выбросы, радуя экологов.

Неизвестно, что будет под капотами автомобилей лет через 20 – ближайшее будущее мы смело можем именовать турбо эрой.

 

kakpravilino.com

Турбированный бензиновый двигатель

Турбированный бензиновый двигатель - ДВС с искусственно поднятой при помощи турбонагнетателя или механического компрессора степенью сжатия в цилиндрах с целью повышения мощности.

Двигатель

История изобретения турбированного бензинового двигателя

Возможность увеличения мощности, не увеличивая бесконечно рабочий объем, интересовала инженеров с момента появления двигателя внутреннего сгорания. Решение, казалось бы, лежало на поверхности: необходимо сделать «дыхание» двигателя более эффективным, т.е. добиться лучшей сгораемости топливовоздушной смеси. Это может обеспечить дополнительная подача воздуха, а значит, он должен поступать в цилиндры не вследствие разряжения, а принудительно, под давлением. Дополнительный объем воздуха даст более полное сгорание топлива, соответственно, увеличится и мощность, получаемая в результате «мини-взрыва» смеси в цилиндре.

Однако развитие и внедрение турботехнологий происходило достаточно медленно. Изначально турбокомпрессоры использовались для крупных корабельных и авиационных силовых установок, а первыми автомобилями с турбированными двигателями закономерно стали грузовики.

Завод Swiss Machine Works Sauer начал выпускать для них такие установки с 1938 года. В начале 60-х годов на американском рынке появились и первые легковые автомобили, оснащенные турбинами. Это были Oldmobile Jetfire и Chevrolet Corvair Monza. Однако, эти модели не отличались ни надежностью, ни выносливостью.

Популярными турбокомпрессоры стали в 70-е годы XX столетия, когда их начали массово устанавливать на спортивные автомобили. Тем не менее, широкого распространения в "гражданской" автомобильной промышленности они не получили - этому препятствовал слишком большой расход топлива, отличавший турбированные бензиновые двигатели тех времен.  На фоне нефтяного кризиса 70-х годов этот параметр оказывался важнее всех прочих.

                                                                   

Устройство и принцип работы турбированного бензинового двигателя

Принцип работы турбированной бензиновой силовой установки заключается в использовании специального компрессора, нагнетающего в цилиндры двигателя дополнительный воздух.

Благодаря улучшению наполнения цилиндров топливовоздушной смесью, повышается среднее эффективное давление цикла и возрастает мощность мотора. Приводом турбонаддува служит отработанный газ, энергия которого используется для полезной работы.

Современный турбокомпрессор включает в себя: 
- корпус подшипников;
- турбинное колесо;
- перепускной клапан;
- корпус турбины;
- масляные каналы;
- вал ротора;
- подшипник скольжения;
- компрессорное колесо;
- корпус компрессора;
- пневмопривод перепускного клапана.

В корпусе подшипников расположен ротор: вал с жестко закрепленными турбинным и компрессорным колесами, имеющими лопасти. Вращается ротор на подшипниках скольжения. Их смазку и охлаждение осуществляет моторное масло из системы смазки двигателя. Для дополнительного охлаждения корпуса подшипников могут использоваться каналы с охлаждающей жидкостью.

Корпус турбины, как и корпус всего компрессора, выполнен в форме улитки. Турбинный патрубок - соединяется с выпускным трубопроводом, а компрессорный – с впускным.

Отработанные газы поступают в турбину и раскручивают ротор турбокомпрессора, отдавая свою энергию. Затем через приемную трубу они поступают в глушитель. Колесо компрессора и лопаточное колесо турбины располагаются на одном валу. Получая вращение от турбины, колесо компрессора засасывает воздух из воздушного фильтра и, нагнетая его, подает в двигатель. При этом, компрессор, в зависимости от степени наддува, способен повышать давление воздуха на 30%-80%. С помощью турбонаддува, один и тот же объем двигателя может принять рабочую смесь в большем количестве. Поэтому при ее сгорании мощность увеличивается на 20%-50%! Использование энергии выхлопных газов позволяет значительно повысить КПД мотора.

 

Достоинства и недостатки турбированного бензинового двигателя

Основным преимуществом турбированного бензинового двигателя является его сравнительная мощность. Имеется в виду, что, при одинаковом объеме, турбированный двигатель выдает мощности на 40% больше, чем «атмосферный». Несомненным достоинством такого типа силовых установок считается и пониженный выброс в атмосферу вредных веществ.

Однако, турбированные бензиновые двигатели имеют и ряд недостатков. Чтобы уменьшить возникающую при их работе детонацию, пришлось понизить степень сжатия в цилиндрах моторов. Также возросли требования к качеству топлива - для этого типа силовых установок подходят только высокооктановые марки.

В конструкцию пришлось добавить интеркулер – промежуточный охладитель нагнетаемого воздуха, чтобы после нагрева в турбине его плотность не снижалась. Высокая температура, возникающая в ходе рабочего цикла, диктует строгий выбор материалов изготовления деталей выпускной системы, корпусных элементов компрессора и лопаток турбины. Но все эти проблемы не мешают турбированным бензиновым двигателям приобретать в последнее время все большую популярность среди автолюбителей всего мира.

blamper.ru

Зачем нужна в автомобиле турбина?

Всё большее количество производителей автомобилей устанавливают турбину или турбокомпрессор. Популярность этого агрегата в последнее время значительно возросла. Но чем обусловлен столь высокий интерес производителей машин к установке турбин?

Зачем нужна в автомобиле турбина

Для чего используется турбина в автомобиле?

Турбина представляет собой технически сложный агрегат, позволяющий существенно увеличить мощность мотора машины даже с небольшим объёмом двигателя. Сегодня все производители автомобилей озадачились снижением расхода топлива ввиду его значительного подорожания.

Но установка мотора малой мощности на машину среднего и премиум диапазона со значительной массой способна превратить езду в настоящее мучение. Удовольствие от поездок на маломощном автомобиле будет сомнительным. Именно турбина своим появлением позволила решить проблему повышения мощности мотора без увеличения его объёма.

Как работает турбина?

Турбина нагнетает большое количество воздуха в цилиндры двигателя машины. Всё это даёт возможность получить обогащённую воздушно-топливную смесь, значительно увеличивающую мощность мотора. После нажатия на педаль газа автомобиль словно получает невидимый «пинок» значительно ускоряясь. Именно так работает агрегат.

С одинаковой эффективностью турбина может использоваться как на дизельном, так и бензиновом моторе. Конструктивно турбокомпрессор и двигатель транспортного средства представляют собой единое целое. Принцип работы агрегата достаточно простой. Именно поэтому ресурс эксплуатации турбины одинаков с ресурсом мотора машины при условии правильной эксплуатации и своевременного ухода.

Основные причины выхода из строя турбины?

Причины выхода из строя автомобильных турбин могут быть различные и зависят от одного или совокупности факторов:

  • механическое повреждение корпуса или крыльчатки;
  • люфт крыльчатки;
  • недостаточный уровень моторного масла;
  • коррозийные процессы;
  • неправильная установка турбины;
  • редкая замена моторного масла.

Турбокомпрессор автомобиля достаточно требователен к уходу и нуждается в правильной эксплуатации. Необходимо помнить, что ремонт турбины достаточно дорогое удовольствие.

Как можно определить выход из строя турбины?

Опытные водители достаточно просто могут определить неисправность турбины автомобиля. Но зачастую подобная диагностика не может установить, что именно привело к поломке агрегата.

Среди основных признаков неисправности турбокомпрессора можно выделить следующие:

  • появление неприятного свиста под капотом машины при разгоне;
  • значительные подтеки масла в районе установки турбины или интеркулера;
  • включение значка неисправности двигателя на панели приборов;
  • значительное снижение мощности мотора.

При выявлении вышеперечисленных признаков необходимо как можно быстрее обратиться за помощью к специалистам. Они, используя специальное оборудование, смогут установить причину выхода из строя турбокомпрессора. Сегодня необязательно приобретать новую турбину можно провести капитальный ремонт неисправного агрегата.

Спасибо за внимание, удачи вам на дорогах.

www.avtogide.ru

Установка турбины на двигатель дизельный, бензиновый, принцип работы турбонаддува, эксплуатация

Автопромышленность развивается семимильными шагами, и для современных автовладельцев знания о различных новых автомобильных технологиях оказываются весьма полезными. Двигатели с турбинами, роботизированные коробки передач и вариаторы, системы защиты автомобиля, навигация и многое другое — становятся новой реальностью. В данной статье поговорим о том, что дает установка турбины на бензиновый и дизельный двигатель, каковы отзывы и неисправности, особенности эксплуатации и ремонта турбин, разберем плюсы и минусы, принципы работы турбонаддува.

установка турбины на двигатель

Действительно, едва ли можно встретить человека, которой ни разу в своей жизни не заметил бы машину, по крайней мере внешне ничем не отличающуюся от обычных, с небольшим шильдиком «turbo». И только посвященному в возможности турбонаддува известно, сколько интересного и захватывающего скрыто под этой скромной надписью.

Принцип работы турбонаддува

Немного физики. Перед автомобильными конструкторами стоит извечная проблема повышения мощности двигателя. Еще со школьной скамьи мы помним, что мощность мотора находится в прямой зависимости от объема сжигаемого за рабочий цикл топлива. Иначе говоря, чем больше горючего сжигается, тем большую мощность получают. Но не все так просто на пути увеличения количества лошадиных сил под капотом – как правило, здесь конструкторов-мотористов поджидает немало проблем.

компрессор для ДВС с турбиной

Как известно, процесс горения топлива проходит в присутствии кислорода, поэтомув цилиндрах фактически сгорает не топливо, а смешанные в определенном соотношении топливо и воздух. Особенности процесса топливного горения зависят, например, от состава горючего или режима работы мотора, и некоторых других факторов. К примеру, в случае бензиновых двигателей топливо и воздух находятся в соотношении один к 14–15, то есть воздуха требуется довольно много. Увеличить подачу топлива – не проблема, чего не скажешь о столь значительном увеличения подачи воздуха.В основе работы обычного ДВС лежит разница между давлением непосредственно в цилиндрах и атмосферным столбом, благодаря чему необходимый воздух попадает в двигатель самостоятельно. В этом случае получается прямая зависимость между объемом цилиндра и кислородом, который попадает в него на каждом цикле. По этому пути пошли американцы – выпущенные ими огромные двигатели имеют умопомрачительный расход горючего.

Как загнать в цилиндр больше воздуха? Первый способ увеличить в определенном объеме количество воздуха придумал немецкий инженер-конструктор Готлиб Вильгельм Даймлер. Это та самая светлая голова, чье имя стало частью названия знаменитой автомобильной марки Daimler Benz AG. 1885 год был ознаменован рождением нового мотора, который при своем незначительном весе и небольших размерах обеспечивал большую мощность. Воздух в него закачивался посредством специального нагнетателя, представляющего собой вентилятор (компрессор). Получив вращение напрямую от вала двигателя, он загонял сжатый воздух в цилиндры.В начале XX века швейцарскому инженеру-изобретателю Альфреду Бюхи удалось пойти еще дальше. Под его руководством в производственной фирме Sulzer Brothers проходили работы по разработке дизельных двигателей. С одной стороны ему категорически не нравились большие и тяжелые, к тому же маломощные моторы, с другой – не хотелось использовать и идею вращения приводного компрессора за счет энергии движка. Это и привело к поискам нового решения нагнетания воздуха. Так, в 1905 году впервые в мире было запатентовано новое устройство нагнетания, основанное на использовании энергии выхлопных газов в качестве движителя.

турбины для двигателей внутреннего сгорания

Идея турбонаддува – проста, как, впрочем, и все гениальное. Аналогично работе ветра по вращению крыльев мельницы, колесо с лопатками здесь крутят отработавшие газы. Ротор турбины, как называют маленькое колесо с большим количеством лопаток, и колесо компрессора посажены на один вал. Полученную конструкцию, турбонагнетатель или турбокомпрессор (лат. turbo – вихрь, compressio – сжатие) можно условно разделить на:

  • ротор – вращается под действием выхлопных газов
  • и компрессор – будучи соединенным с ротором, он выступает в роли вентилятора, нагнетающего дополнительный воздух в цилиндры.

Воздух, попадающий в цилиндры турбомотора, часто нуждается в дополнительном охлаждении. В этом случае, загнав туда больше кислорода, можно будет повысить его давление, поскольку уже в цилиндре ДВС сжать холодный воздух гораздо легче, чем горячий. При прохождении через турбину воздух за счет сжатия и разогретых выхлопными газами деталей турбонаддува нагревается. Его охлаждают с помощью промежуточного охладителя, интеркулера. Это радиатор, который установлен по ходу движения воздуха межу компрессором и цилиндрами мотора. При прохождении через интеркулер воздух отдает тепло атмосфере и охлаждается. А уже холодный, более плотный воздух можно загонять в цилиндр в большем объеме.Получается определенная цепочка – большее количество выхлопных газов, попавших в турбину, заставляет ее быстрее вращаться, а больший объем дополнительного воздуха, поступающего в цилиндры, повышает мощность.Решение это – довольно эффективное, поскольку по сравнению, допустим, с приводным нагнетателем требуется значительно меньше затрат энергии двигателя (порядка 1,5%) на самообслуживание наддува. Это легко объясняется тем, что источником энергии ротора турбины является не замедление выхлопных газов, а их охлаждение – выхлопные газы после турбины идут так же быстро, но они более холодные.Более того, на сжатие воздуха затрачивается даровая энергия, что способствует повышению КПД двигателя. К тому же, возможность получить большую мощность с рабочего объема поменьше приводит к меньшим потерям на трении, меньшей массе мотора (следственно и машины в целом).

Плюсы и минусы турбонаддува

Таким образом, автомобиль с турбонаддувом оказался значительно экономичнее своих атмосферных собратьев равной мощности. Тем не менее, оптимальным такое решение не назовешь по нескольким причинам. Начнем, к примеру, со скорости вращения турбины, которая может достигать порядка 200 тысяч оборот/мин или температуры раскаленных газов, достигающей, трудно даже представить, 1000°C. Очевидно, что создание и установка турбонаддува, способного в течение длительного времени выдерживать столь сильные нагрузки — это довольно дорого и непросто.Именно поэтому установка турбины на двигатель первоначально получила достаточно широкое распространение исключительно в годы Второй мировой войны, причем только в авиации. В последующем, в 50-е годы ХХ века, турбонаддув стали использовать в тракторах американской компании Caterpillar и первых турбодизелях для грузовиков компании Cummins. И только в 1962 году они появились на серийных легковых автомобилях, причем почти одновременно на Chevrolet Corvair Monza (Шевроле Корвэйр Монца) и Oldsmobile Jetfire (Олдсмобиле Джетфайер).

Однако сложность конструкции и ее дороговизна оказались не единственными недостатками турбонаддува. Насколько эффективно будет проходить эксплуатация двигателя с турбиной во многом определяется оборотами движка. Действительно, на малых оборотах и, соответственно, небольшом объеме выхлопных газов ротор раскручивается слабо, и компрессор, в свою очередь, почти не задувает дополнительный воздух в цилиндры. Порой даже до 3000 оборот/мин мотор вообще не тянет, и «выстреливает» только где-то после четырёх-пяти тысяч. Подобная ситуация называется турбоямой.Еще один момент — сложный и дорогой ремонт турбины в случае возникновения неисправностей турбированного двигателя, поскольку обслуживание таких агрегатов остается прерогативой сертифицированных станций фирменного техосблуживания.

Эксплуатация двигателя с турбиной

Поскольку для большей турбины необходимо больше времени на раскрутку, то турбоямы, как правило, грозят в первую очередь моторам, имеющим очень высокую удельную мощность и турбины высокого давления. Что же касается турбин с низким давлением, то у них провалов тяги, можно сказать, нет, однако мощность они способны поднять не очень сильно.От турбоямы удается почти избавиться при использовании схемы с последовательным наддувом, суть которой в следующем: на малых оборотах мотора работает малоинерционный небольшой турбокомпрессор, который на низах увеличивает тягу, а на высоких оборотах по мере роста давления на выпуске включается второй, побольше.В прошлом веке этот принцип был использован на суперкаре Порше 959. Сегодня же эта схема используется, к примеру, на турбодизелях фирм Land Rover и BMW. В бензиновых двигателях с турбинами Volkswagen в качестве маленького турбокомпрессора выступает приводной нагнетатель.В случае рядных двигателей чаще используют одиночный турбокомпрессор типа twin-scroll с двойным рабочим аппаратом. Каждую из «улиток» наполняют выхлопные газы от различных групп цилиндров, но они обе подают газы при этом на одну турбину, достаточно эффективно раскручивая ее и на малых оборотах, и на больших.Но чаще всего можно встретить пару одинаковых турбокомпрессоров, обслуживающих параллельно различные группы цилиндров. Типичной схемой для V-образных турбомоторов является следующая: каждому блоку – свой нагнетатель, хотя и не без исключений. Например, двигатель V8 от Motorsport Gmbh (дочерняя компания BMW AG), который впервые был использован на автомобилях BMW серии X5 M и X6 M, имеет перекрестный выпускной коллектор, позволяющий получать компрессору twin-scroll выхлопные газы из работающих в противофазе цилиндров различных блоков.

Эффективность двигателя с турбиной

Еще один вариант повышения эффективности работы турбокомпрессора с охватом всего диапазона оборотов – это изменение геометрии рабочей части. Специальные лопатки, поворачиваясь внутри «улитки», в зависимости от оборотов, варьируют форму сопла. В итоге получается «супертурбина», которая хорошо работает при любых оборотах. Хотя идея эта – не из новых, но реализовать ее удалось не так уж давно. Установка подобных турбин началась с дизельных двигателей, а из бензиновых первым примерил турбину с изменяемой геометрией Porsche 911 Turbo.

В последнее время популярность турбомоторов резко возросла, поскольку помимо форсирования силовых агрегатов они повышают экономичность и чистоту выхлопа. Это особенно важно для дизельных двигателей. Сегодня редко какой дизель обходится без приставки «турбо», а по отзывам, если поставить турбину на бензиновый двигатель обычного автомобиля, это превратит его в настоящую «зажигалку». Да и просто заурядные, но современные седаны, универсалы и хэтчбеки скрывают под капотом бензиновые и дизельные двигатели, оснащаемые турбинами, позволяющими уменьшить количество цилиндров, рабочий объем мотора, а соответственно не только массу, но и расход постоянно увеличивающегося в цене топлива.

povozcar.ru

Как работает двигатель с турбонаддувом

Как работает двигатель с турбонаддувомКак известно, в цилиндрах двигателя автомобиля сгорает не чистое топливо, а топливно-воздушная смесь. Поэтому для сгорания топлива необходим кислород.

Смешение топлива с воздухом происходит в определенной пропорции. Для бензиновых двигателей она составляет 1 часть топлива к 15 частям воздуха.

Как видим, воздуха для сгорания требуется немало. С увеличением подачи топлива увеличивается подача воздуха. В стандартных двигателях данная потребность обеспечивается за счет небольшой разницы давлений в цилиндре и окружающей атмосфере. Чем большим будет объем цилиндра, тем больше он способен принять кислорода.

Как работает турбонаддув?

Поступающие из двигателя автомобиля выхлопные газы приводят в движение ротор турбины. Он в свою очередь вращает компрессор, который подает сжатый воздух в цилиндры. Предварительно воздух пропускается через интеркулер для охлаждения потока. Таким образом, чем больше выхлопных газов попадет в турбину, тем быстрее она будет вращаться и тем больше подаст воздуха в цилиндры. Чем больше воздуха попадет в цилиндры, тем выше будет мощность двигателя.

На ”обслуживание” турбонаддува уходит всего 1,5% энергии двигателя. С другой стороны даровая энергия, которая затрачивается на сжатие воздуха, повышает КПД мотора. Благодаря этому снижаются потери на трение, уменьшается вес силового агрегата. К сожалению, за очевидной экономичностью данной технологии скрываются определенные затруднения.

Устройство турбонаддува в двигателе

Недостатки двигателей с турбонаддувом и их решение

Одной из составляющих системы турбонаддува является турбина, которая состоит из корпуса, уплотнительных элементов, двух улиток, вала с крыльчатками и нескольких подшипников скольжения. Когда скорость вращения турбины достигает 200 тыс. об./мин., газы нагреваются до 1000°C. Поэтому конструкция турбонаддува должна выдерживать значительные нагрузки, что становится причиной её дороговизны и сложности.

Другой проблемой является эффективность работы турбины, которая зависит от оборотов двигателя. На небольших оборотах ощущается недостаток выхлопных газов, поэтому ротор раскручивается слабо. Поскольку компрессор не подает в цилиндры дополнительный воздух, двигатель работает в так называемой ”турбояме”. После 4-5 тыс. мотор ”выстреливает” и тогда хорошо заметен эффект турбонаддува.

Особенно остро данная проблема ощущается с двигателями, которые оснащены турбинами высокого давления. Главная причина в том, что большая турбина дольше раскручивается. С турбинами низкого давления провалы тяги обычно отсутствуют, однако и мощность они поднимают незначительно.

Одним из способов устранения турбоямы является схема последовательного наддува. В этом случае на малых оборотах работает малоинерционный турбокомпрессор, поднимающий тягу на “низах”. С увеличением оборотов включается уже другой механизм. В настоящее время последовательный наддув часто используют BMW и Land Rover.

Турбина с изменяемой геометрией

На рядных двигателях обычно ставят одиночный турбокомпрессор twin-scroll (пара ”улиток”), оснащенный двойным рабочим аппаратом. Каждую ”улитку” наполняют выхлопными газами разные группы цилиндров. При этом обе ”улитки” подают воздух только на одну турбину, что позволяет эффективно её раскручивать на высоких и низких оборотах.

И все же самым распространенным вариантом является пара одинаковых турбокомпрессоров, которые параллельно обслуживают разные группы цилиндров. Это типичная схема всех V-образных турбодвигателей с собственным нагнетателем для каждого блока.

Последним достижением инженеров стала технология изменения рабочей области, повышающая эффективность работы турбокомпрессора во всём диапазоне оборотов. Специальные лопатки варьируют форму сопла в зависимости от частоты оборотов внутри «улитки». Первые турбины с изменяемой геометрией появились на дизельных двигателях.

Сегодня конструкция двигателей с турбонаддувом доведена практически до совершенства, что привело к росту их популярности. Современные турбокомпрессоры не только эффективно форсируют моторы, но также повышают экономичность и чистоту выхлопа, что особенно актуально для дизельных двигателей.

all-drive.net