N2 nj: Азот. Химия азота и его соединений

Содержание

Азот. Химия азота и его соединений

 

1. Положение азота в периодической системе химических элементов
2. Строение атома азота 
3. Физические свойства и нахождение в природе
4. Строение молекулы
5. Соединения азота
6. Способы получения
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и кремнием
7.1.3. Взаимодействие с водородом и фосфором 
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с активными металлами

Аммиак 
1. Строение молекулы и физические свойства 
2. Способы получения
3. Химические свойства
3.1. Взаимодействие с серной кислотой
3.2. Взаимодействие с азотной кислотой
3.3. Взаимодействие с солями

Соли аммония
Способы получения солей аммония
Химические свойства солей аммония

Оксиды азота 
 1. Оксид азота (I) 

 2. Оксид азота (II) 
3. Оксид азота (III)
4. Оксид азота (IV)
5. Оксид азота (V)

Азотная кислота 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства 
3.1. Диссоциация азотной кислоты 
2.3. Взаимодействие с основными и амфотерными оксидами и гидроксидами
2.4. Вытеснение более слабых кислот из солей
2.5. Взаимодействие с металлами
2.6. Взаимодействие с неметаллами
2.7. Окисление сложных веществ
2.8. Взаимодействие с белками

Азотистая кислота 

Соли азотной кислоты — нитраты

Соли азотистой кислоты — нитриты

Азот

 

Положение в периодической системе химических элементов

 

Азот расположен в главной подгруппе V группы  (или в 15 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

 

Электронное строение азота

 

Электронная конфигурация  азота в основном состоянии:

Атом азота содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом азота может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному механизму. Таким образом, максимальная валентность

азота в соединениях равна IV. Также характерная валентность азота в соединениях — III.

Степени окисления атома азота – от -3 до +5. Характерные степени окисления азота -3, 0, +1, +2, +3, +4, +5.

 

Физические свойства и нахождение в природе

 

Азот в природе существует в виде простого вещества газа N2.  Нет цвета, запаха и вкуса. Молекула N2 неполярная, следовательно, в воде азот практически нерастворим.

Азот – это основной компонент воздуха (79% по массе). В земной коре азот встречается в основном в виде нитратов. Входит в состав белков

, аминокислот и нуклеиновых кислот в живых организмах.

 

Строение молекулы

 

Связь между атомами в молекуле азота – тройная, т.к. у каждого атома в молекуле по 3 неспаренных электрона. Одна σ-связь (сигма-связь) и две — π-связи.

Структурная формула молекулы азота:

Структурно-графическая формула молекулы азота: N≡N.

Схема перекрывания электронных облаков при образовании молекулы азота:

Соединения азота

 

Типичные соединения азота:

Степень окисленияТипичные соединения
+5оксид азота (V) N2O5

азотная кислота HNO3

нитраты MeNO3

+4оксид азота (IV) NO2
+3оксид азота (III)

азотистая кислота

нитриты MeNO2

+2оксид азота (II) NO
+1оксид азота (I)
-3аммиак NH3

нитриды металлов MeN

бинарные соединения азота с неметаллами

Способы получения азота

 

1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена

нитрит аммония легко разлагается с образованием азота и воды. В колбу наливают раствор хлорида аммония, а капельную воронку раствор нитрита натрия. При приливании нитрита натрия в колбу начинается выделение азота. Собирают выделяющийся азот в цилиндр. Горящая лучинка в атмосфере азота гаснет.

NaNO2   +   NH4Cl   →   NH4NO2   +  NaCl

NH4NO2  →   N2   +   2H2O

Суммарное уравнение процесса:

NaNO2   +   NH4Cl   →   N2   +  NaCl   +  2H2O

Видеоопыт взаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.

Азот также образуется при горении аммиака:

4NH3   +  3O  →   2N2   +  6H2O

2. Наиболее чистый азот получают разложением азидов щелочных металлов.

Например, разложением азида натрия:

2NaN3   →   2Na    +    3N2

3. Еще один лабораторный способ получения азота — восстановление  оксида меди (II)  аммиаком при температуре ~700 °C:

3CuO  +  2NH3  →   3Cu   + N2    +  3H2O

 

В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.

Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.

Адсорбционные методы разделения воздуха на компоненты основаны на  разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.

Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.

В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.

 

Химические свойства азота

 

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства

окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами.

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000оС),  на электрической дуге  (в природе – во время грозы):

N +  O ⇄   2NO –  Q

 

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2.

 При сильном нагревании (2000оС или действие электрического разряда) азот реагирует с серой, фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С  + N→  N≡C–C≡N

 

1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре ,в присутствии катализатора. При этом образуется аммиак:

N2   +   ЗН2   ⇄    2NH3

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-

нитриды.

Например, литий реагирует с азотом с образованием нитрида лития:

N2   +   6Li   →   2Li3N

 

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например, азот окисляет гидрид лития:

N2    +  3LiH  →   Li3N   +   NH3

 

Аммиак

 

Строение молекулы и физические свойства

 

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3о:

 У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:

Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

 

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск

ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

 

2NH4Cl    +  Са(OH)2   →   CaCl2  + 2NH3  +   2Н2O

 

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например, гидролиз нитрида кальция:

 

Ca3N2    +   6H2O  →  ЗСа(OH)2    +    2NH3

 

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

N2    +   3Н2    ⇄    2NH3

 

Процесс проводят при температуре 500-550оС и в присутствии катализатора.  Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

 

Химические свойства аммиака

 

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H+), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

:NH3   +   H2O    ⇄    NH4+   +   OH

 

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

 

NH3    +    H2SO4    →    NH4HSO4

2NH3   +   H2SO4    →   (NH4)2SO4

 

Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

 

NH3    +    H2O   + CO2  →    NH4HCO3

2NH3   +   H2O   + CO2    →   (NH4)2CO3

 

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть  здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония. 

 

NH3   +   HCl  →   NH4Cl

 

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

 

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.

Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

FeSO4  + 2NH3  + 2H2O  →  Fe(OH)2  + (NH4)2SO4

 

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.

Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

4NH3    +  CuCl2  →  [Cu(NH3)4]Cl2

Гидроксид меди (II) растворяется в избытке аммиака:

4NH3    +   Cu(OH)2   → [Cu(NH3)4](OH)2

 

5. Аммиак горит на воздухе, образуя азот и воду:

4NH3    +   3O2    →  2N2   +   6H2O

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

4NH3    +   5O2    →    4NO  +   6H2O

 

6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.

Например, жидкий аммиак реагирует с натрием с образованием амида натрия:

2NH3   +    2Na   →   2NaNH2   +  H2

 Также возможно образование Na2NHNa3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3    +   2Al   →   2AlN   +   3H2

 

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например, аммиак окисляется хлором до молекулярного азота:

2NH3    +   3Cl2    →  N2   +   6HCl

Пероксид водорода также окисляет аммиак до азота:

2NH3    +   3H2O2    →  N2   +   6H2O

Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например, оксид меди (II) окисляет аммиак:

2NH3    +   3CuO   →    3Cu   +   N2   +   3H2O

 

Соли аммония

 

Соли аммония – это соли, состоящие из катиона аммония и аниона кислотного остатка.

 

Способы получения солей аммония

 

1. Соли аммония можно получить взаимодействием аммиака с кислотами. Реакции подробно описаны выше.

 

2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.

Например, хлорид аммония реагирует с нитратом серебра:

NH4Cl + AgNO3 → AgCl + NH4NO3

 

3. Средние соли аммония можно получить из кислых солей аммония. При добавлении аммиака кислая соль переходит в среднюю.

Например, гидрокарбонат аммония реагирует с аммиаком с образованием карбоната аммония:

NH4НCO3  +   NH3   →   (NH4)2CO3

 

Химические свойства солей аммония

 

1. Все соли аммония – сильные электролиты, почти полностью диссоциируют на ионы в водных растворах:

NH4Cl   ⇄   NH4+ + Cl

2. Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями, если в продуктах образуется газ, осадок или образуется слабый электролит.

Например, карбонат аммония  реагирует с соляной кислотой. При этом выделяется углекислый газ:

(NH4)2CO3    +   2НCl →   2NH4Cl + Н2O + CO2

 

Соли аммония реагируют с щелочами с образованием аммиака.

Например, хлорид аммония реагирует с гидроксидом калия:

NH4Cl     +   KOH   →   KCl    +   NH3   +   H2O

 

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

 

3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:

NH4Cl   +    Н2O    ↔   NH3 ∙ H2O   +   HCl

NH4+     +     HOH    ↔   NH3 ∙ H2O      +   H+

 

4. При нагревании соли аммония разлагаются. При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

NH4Cl   →    NH3   +   HCl

NH4HCO3    →   NH3   +   CO2    +   H2O

  (NH4)2SO4    →   NH4HSO4   +  NH3

NH4HS  →   NH3   +   H2S

 

Если соль  содержит анион-окислитель, то разложение сопровождается  изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

 

NH4NO2   →   N2    +    2H2O  

190 – 245° C:

NH4NO3  →   N2O   +   2H2O

При температуре 250 – 300°C:

 2NH4NO3  →   2NO    +   4H2O

При температуре выше 300°C:

2NH4NO3    →   2N2   +   O2   +   4H2O

 

Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

(NH4)2Cr2O7  →   Cr2O3    +   N2   +   4H2O

 

Окислитель –  хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов.  Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.

Видеоопыт разложения дихромата аммония можно посмотреть здесь.

 

Оксиды азота

 

Оксиды азотаЦвет ФазаХарактер оксида
N2O Оксид азота (I), закись азота, «веселящий газ»бесцветныйгазнесолеобразующий
NO Оксид азота (II), закись азота, «веселящий газ»бесцветныйгазнесолеобразующий
N2OОксид азота (III), азотистый ангидридсинийжидкостькислотный
NOОксид азота (IV), диоксид азота, «лисий хвост»бурыйгазкислотный (соответствуют две кислоты)
N2OОксид азота (V), азотный ангидридбесцветныйтвердыйкислотный
Оксид азота (I)

 

Оксид азота (I) –  это несолеобразующий оксид. Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость. Закись азота обладает слабой наркотической активностью, в связи с чем в медицине её применяют в больших концентрациях. В смеси с кислородом при правильном дозировании (до 80 % закиси азота) вызывает хирургический наркоз.

Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:

 

 

Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:

 

 

Получить оксид азота (I) в лаборатории можно разложением нитрата аммония:

 NH4NO3  →   N2O   +   2H2O

 

Химические свойства оксида азота (I):

 

1. При нормальных условиях оксид азота (I) инертен. При нагревании проявляет свойства окислителя. Оксид азота (I) при нагревании окисляет водород, аммиак, металлы, сернистый газ и др. При этом азот восстанавливается в простое вещество.

N2O      +    H2    →  N2   +   H2O

N2O      +    Mg   →  N2   +   MgO

N2O      +   2Cu   →  N2   +   Cu2O

3N2O    +   2NH3  →   4N2   +  3H2O

N2O      +    H2O   +  SO →   N2   +   H2SO4

 

Еще пример: оксид азота (I) окисляет углерод и фосфор при нагревании:

N2O   +   C   →   N2   +   CO

5N2O   +   2Р   →   5N2   +   Р2O5

2. При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя.

Например, N2O окисляется раствором перманганата в серной кислоте:

5N2O    +    3H2SO4   +   2KMnO4   →  10NO   +   2MnSO4    +   K2SO4    +  3H2O

 

Оксид азота (II)

 

Оксид азота (II) –  это несолеобразующий оксид.  В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

 

Способы получения.

 

1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.

Например, при действии 30 %-ной азотной кислоты на медь образуется NO:

3Cu   +   HNO3(разб.)  →  3Cu(NO3)2   +  2NO  + 4H2O

Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:

FeCl2    +     NaNO3   +   2HCl   →   FeCl3   +   NaCl    +  NO   +   H2O

  2HNO3   +  2HI   →   2NO   +   I2    +   2H2O

 

2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:

N2   +   O2  →   2NO

 

3. В промышленности оксид азота (II) получают каталитическим окислением аммиака:

4NH3    +   5O2    →    4NO  +   6H2O

 

Химические свойства.

 

1. Оксид азота (II) легко окисляется под действием окислителей.

Например, горит в атмосфере кислорода:

2NO    +   O2   →   2NO2

Оксид азота (II) легко окисляется под действием хлора или озона:

2NO   +   Cl2  →  2NOCl

NO   +  O3  →   NO2   +   O2

 

2. В присутствии более сильных восстановителей проявляет свойства окислителя. В атмосфере оксида азота (II) могут гореть водород, углерод и т.п.

Например, оксид азота (II) окисляет водород и сернистый газ:

2NO   +   2H →  N2   +   2H2O

2NO   +  2SO2   →   2SO3   +   N2

 

Оксид азота (III)

 

Оксид азота (III), азотистый ангидрид – кислотный оксид. За счет азота со степенью окисления +3 проявляет восстановительные и окислительные свойства. Устойчив только при низких температурах, при более высоких температурах разлагается.

Способы получения: можно получить при низкой температуре из оксидов азота:

NO2     +   NO   ↔   N2O3

 

Химические свойства:

 

1. Оксид азота (III) взаимодействует с водой с образованием азотистой кислоты:

N2O3   +   H2O   ↔  2HNO2

 

2. Оксид азота (III) взаимодействует с основаниями и основными оксидами:

Например, оксид азота (III) реагирует с гидроксидом и оксидом натрия с образованием нитрита натрия и воды:

N2O3   +   2NaOH   →  2NaNO2    +   H2O

N2O3 + Na2O →  2NaNO2

 

Оксид азота (IV)

 

Оксид азота (IV) — бурый газ. Очень ядовит!  Для NO2  характерна высокая химическая активность.

 

Способы получения.

 

1. Оксид азота (IV) образуется при окислении оксида азота (I) и оксида азота (II) кислородом или озоном:

2NO   +  O2  →   2NO2

 

2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.

Например, при действии концентрированной азотной кислоты на медь:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

 

3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.

Например, при разложении нитрата серебра:

2AgNO3    →  2Ag   +   2NO  +   O2

 

Химические свойства.

 

1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:

2NO2   +   H2O   →  HNO3   +   HNO2

Если растворение NO2 в воде проводить в избытке кислорода, то образуется только азотная кислота:

4NO2   +   2H2O   +  O2   →  4HNO3

Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3  и   NO:

3NO2   +   H2O   →  2HNO3   +   NO

При нагревании выделяется кислород:

4NO2   +   2H2O   →   4HNO3   +  O2

 

2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:

 2NO2   +   2NaOH   →  NaNO3   +   NaNO2   +   H2O

4NO2   +   2Ca(OH) →   Ca(NO2)2   +   Ca(NO3)2      +   2H2O

В присутствии кислорода образуются только нитраты:

4NO2   +   4NaOH  +   O2   →   4NaNO3   +   2H2O

 

3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор, уголь, сера, оксид серы (IV) окисляется до оксида серы (VI):

2NO2   +   2S   →  N2   +   2SO2

2NO2   +   2C   →  N2   +   2CO2

10NO2   +   8P   →  5N2   +   4P2O5

NO2    +   SO2  →   SO3   +   NO

 

4. Оксид азота (IV) димеризуется:

2NO2  ⇄  N2O4

 

Оксид азота (V)

 

N2O5– оксид азота (V), ангидрид азотной кислоты – кислотный оксид.

 

Получение оксида азота (V).

 

1. Получить оксид азота (V) можно окислением диоксида азота:

2NO2 + O3    →    N2O5 + O2

 

2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V):

2HNO3    +   P2O5      →   2HPO3    +    N2O5

 

Химические свойства оксида азота (V).

 

1. При растворении в воде оксид азота (V) образует азотную кислоту:

N2O5    +   H2O   →  2HNO3

 

2. Оксид азота (V), как типичный кислотный оксид, взаимодействует с основаниями и основными оксидами с образованием солей-нитратов.

Например, оксид азота (V) реагирует с гидроксидом натрия:

N2O5    +   2NaOH   →  2NaNO3  +   H2O

Еще пример: оксид азота (V) реагирует с оксидом кальция:

N2O5 + CaO → Ca(NO3)2

 

3. За счет азота со степенью окисления +5 оксид азота (V) – сильный окислитель.

Например, он окисляет серу:

2N2O5   +   S   →   SO2   +   4NO2

 

4. Оксид азота (V) легко разлагается при нагревании (со взрывом):

2N2O5     →   4NO2   +   O2

 

Азотная кислота

 

Строение молекулы и физические свойства

 

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

 

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

 

Способы получения

 

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота  образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например, концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

KNO3    +    H2SO4(конц)    →    KHSO4    +    HNO3

2. В промышленности азотную кислоту получают из аммиака. Процесс осуществляется стадийно.

1 стадия. Каталитическое окисление аммиака.

4NH3    +   5O2    →    4NO  +   6H2O

2 стадия. Окисление оксида азота (II)  до оксида азота (IV) кислородом воздуха.

2NO   +    O2   →    2NO2

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

4NO2   +   2H2O   +  O2   →  4HNO3

 

Химические свойства

 

Азотная кислота – это сильная кислота. За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства.

1. Азотная кислота практически полностью диссоциирует в водном растворе.

 HNO→ H+ + NO3

 

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, азотная кислота взаимодействует с оксидом меди (II):

CuO   +   2HNO3   →   Cu(NO3)2   +   H2O

Еще пример: азотная кислота реагирует с гидроксидом натрия:

HNO3   +   NaOH   →   NaNO3   +   H2O

 

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов). 

Например, азотная кислота взаимодействует с карбонатом натрия:

2HNO3   +   Na2CO3   →  2NaNO3   +   H2O   +   CO2

 

4. Азотная кислота частично разлагается при кипении или под действием света:

4HNO3  →   4NO2   +   O2   +   2H2O

 

5. Азотная кислота активно взаимодействует с металлами. При этом  никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3  не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Fe    +   6HNO3(конц.)  →   Fe(NO3)3   +   3NO2  +   3H2O

 Al   +   6HNO3(конц.)   →  Al(NO3)3   +   3NO2  +   3H2O

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 :  3 (по объему):

HNO3      +   3HCl   +   Au   →   AuCl3   +   NO   +   2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

10HNO3       +  4Ca   →    4Ca(NO3)2    +    2N2O   +   5H2O

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

8HNO3 (разб.)     +    3Cu   →    3Cu(NO3)2    +    2NO   +   4H2O

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

12HNO3(разб)     +  10Na   →    10NaNO3    +    N2   +   6H2O

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

10HNO3       +  4Ca    →   4Ca(NO3)2    +    2N2O   +   5H2O

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

10HNO3         +  4Zn   →    4Zn(NO3)2    +    NH4NO3   +   3H2O

 

Таблица. Взаимодействие азотной кислоты с металлами.

 

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe 
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2

 

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNOобычно восстанавливается до NO  или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например, азотная кислота окисляет серу, фосфор, углерод, йод:

6HNO3       +   S     →   H2SO4   +   6NO2    +    2H2O

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

5HNO3      +    P   →    H3PO4     +   5NO2    +    H2O

5HNO3      +    3P     +    2H2O   →    3H3PO4     +   5NO

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

4HNO3     +    C   →   CO2    +    4NO2    +    2H2O

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

10HNO3   +   I2  →   2HIO3   +   10NO2   +   4H2O

7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например, азотная кислота окисляет оксид серы (IV):

2HNO3     +   SO2  →   H2SO4     +   2NO2

Еще пример: азотная кислота окисляет йодоводород:

6HNO3   +   HI   →  HIO3   +   6NO2   +   3H2O

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С    +    4HNO3   →    3СО2    +    4NO    +   2H2O

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты. 

Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

2HNO3     +   H2S     →  S    +    2NO2   +   2H2O

При нагревании до серной кислоты:

2HNO3     +   H2S     →  H2SO4    +    2NO2   +   2H2O

8HNO3     +    CuS   →   CuSO4    +   8NO2    +   4H2O

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

4HNO3     +    FeS   →   Fe(NO3)3  +   NO    +   S    +   2H2O

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция»).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

 

 

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

 

Азотистая кислота

 

Азотистая кислота HNO2— слабая, одноосновная, химически неустойчивая кислота.

 

Получение азотистой кислоты.

 

Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.

Например, соляная кислота вытесняет азотистую кислоту из нитрита серебра:

AgNO2   +   HCl   →    HNO2    +   AgCl

Химические свойства.

 

1. Азотистая кислота HNO2  существует только в разбавленных растворах, при нагревании она разлагается:

3HNO2   →  HNO3  +   2NO   +   H2O

без нагревания азотистая кислота также разлагается:

2HNO2    →    NO2    +    NO   +   H2O

 

2. Азотистая кислота взаимодействует с сильными основаниями.

Например, с гидроксидом натрия:

HNO2   +   NaOH   →   NaNO2   +   H2O

 

3. За счет азота в степени окисления +3 азотистая кислота проявляет слабые окислительные свойства. Окислительные свойства HNO2 проявляет только при взаимодействии с сильными восстановителями.

Например, HNO2 окисляет иодоводород:

2HNO2   +   2HI   →   2NO   +   I2   +   2H2O

 

Азотистая кислота также окисляет иодиды в кислой среде:

2НNO2   +   2KI   +   2H2SO4   →   K2SO4   +   I2 +   2NO   +  2H2O

 

Азотистая кислота окисляет соединения железа (II):

2HNO2   +   3H2SO4   +   6FeSO4  →   3Fe2(SO4)3   +   N2    +    4H2O

 

4. За счет азота в степени окисления +3 азотистая кислота проявляет сильные восстановительные свойства. Под действием окислителей азотистая кислота переходит в азотную.

Например, хлор окисляет азотистую кислоту до азотной кислоты:

HNO2   +  Cl2    +  H2O   →  HNO3  +   2HCl

Кислород и пероксид водорода также окисляют азотистую кислоту:

2HNO2   +   O2  →  2HNO3

HNO2   +   H2O2  →  HNO3   +   H2O

Соединения марганца (VII) окисляют HNO2:

5HNO +   2HMnO →   2Mn(NO3)2   +   HNO3   +   3H2O

 

Соли азотной кислоты — нитраты

 

Нитраты металлов — это твердые кристаллические вещества. Большинство очень хорошо растворимы в воде.

1. Нитраты термически неустойчивы, причем все они разлагаются на кислород и соединение, характер которого зависит от положения металла (входящего в состав соли) в ряду напряжений металлов:

  • Нитраты щелочных и щелочноземельных металлов (до Mg в электрохимическом ряду) разлагаются до нитрита и кислорода.

Например, разложение нитрата натрия:

2KNO3   →  2KNO2   +   O2    

Исключение – литий.

Видеоопыт разложения нитрата калия можно посмотреть здесь.

  • Нитраты тяжелых металлов (от Mg до Cu, включая магний и медь) и литий разлагаются  до оксида металла, оксида азота (IV) и кислорода:

Например, разложение нитрата меди (II):

  2Cu(NO3)2   →   2CuO    +    4NO2   +   O

  • Нитраты малоактивных металлов (правее Cu) – разлагаются до металла, оксида азота (IV) и кислорода.

Например, нитрат серебра:

2AgNO3   →  2Ag   +   2NO  +   O2

 

 

Исключения:

Нитрит железа (II) разлагается до оксида железа (III):

4Fe(NO3)2   →   2Fe2O3   +   8NO2   +   O2

Нитрат марганца (II) разлагается до оксида марганца (IV):

Mn(NO3)2   →   MnO2   +   2NO2 

2. Водные растворы не обладают окислительно-восстановительными свойствами, расплавы – сильные окислители.

Например, смесь 75%    KNO3,  15% C  и  10% S  называют «черным порохом»:

2KNO3   +   3C    +    S   →   N2    +   3CO2    +   K2S

 

Соли азотистой кислоты — нитриты

 

Соли азотистой кислоты устойчивее самой кислоты, и все они ядовиты. Поскольку степень окисления азота в нитритах  равна +3, то они проявляют как окислительные свойства, так и восстановительные.

Кислород, галогены и пероксид водорода окисляют нитриты до нитратов:

2KNO +   O2   →  2KNO3

KNO2   +   H2O2  →  KNO3   +   H2O

KNO2   +   H2O   +   Br2   →  KNO +   2HBr

Лабораторные окислители — перманганаты, дихроматы — также окисляют нитриты до нитратов:

5KNO2   +   3H2SO4   +   2KMnO4   →   5KNO3    +    2MnSO4   +   K2SO4  +  3H2

3KNO2   +   4H2SO4   +   K2Cr2O7   →   3KNO3    +    Cr2(SO4)3   +   K2SO4  +  4H2O  

В кислой среде нитриты выступают в качестве окислителей.

При окислении йодидов или соединений железа (II) нитриты восстанавливаются до оксида азота (II):

 2KNO2   +   2H2SO4   +   2KI   →  2NO    +   I2    +   2K2SO4  +  2H2O

  2KNO2  +  2FeSO4   +  2H2SO→ Fe2(SO4)3 + 2NO + K2SO4 + 2H2O

При взаимодействии с очень сильными восстановителями (алюминий или цинк в щелочной среде) нитриты восстанавливаются максимально – до аммиака:

NaNO2 + 2Al + NaOH + 6H2O → 2Na[Al(OH)4] + NH3

Смесь нитратов и нитритов также проявляет окислительные свойства. Например, смесь нитрата и нитрита калия окисляет оксид хрома (III) до хромата калия:

3KNO2   +   Cr2O3   +  KNO3  →   2K2CrO4   +   4NO

 

Оксид азота I: строение и химические свойства

 

 

Оксид азота (I) N2O, оксид диазотазакись азотавеселящий газ –  это несолеобразующий оксид. Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость. Закись азота обладает слабой наркотической активностью, в связи с чем в медицине её применяют в больших концентрациях. В смеси с кислородом при правильном дозировании (до 80 % закиси азота) вызывает хирургический наркоз.

Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:

 

 

Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:

 

 

Получить оксид азота (I) в лаборатории можно разложением нитрата аммония:

 NH4NO3  →   N2O   +   2H2O

 

Химические свойства оксида азота (I)

 

1. При нормальных условиях оксид азота (I) инертен. При нагревании проявляет свойства окислителя. Оксид азота (I) при нагревании окисляет водород, аммиак, металлы, сернистый газ и др. При этом азот восстанавливается в простое вещество.

N2O      +    H2    →  N2   +   H2O

N2O      +    Mg   →  N2   +   MgO

N2O      +   2Cu   →  N2   +   Cu2O

3N2O    +   2NH3  →   4N2   +  3H2O

N2O      +    H2O   +  SO →   N2   +   H2SO4

 

Еще пример: оксид азота (I) окисляет углерод и фосфор при нагревании:

N2O   +   C   →   N2   +   CO

5N2O   +   2Р   →   5N2   +   Р2O5

2. При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя.

Например, N2O окисляется раствором перманганата в серной кислоте:

5N2O    +    3H2SO4   +   2KMnO4   →  10NO   +   2MnSO4    +   K2SO4    +  3H2O

 

3. Как несолеобразующий оксид, при обычных условиях с основаниями, основными оксидами, амфотерными оксидами, кислотными оксидами, кислотами и амфотерными гидроксидами оксид азота (I) не реагирует:

NO   +   NaOH  

NO   +   KOH  

NO   +   Na2O  

NO   +   CO2  

NO   +   HCl  

Оксид азота II: получение и химические свойства

Оксиды азота

 

 

 

 

Оксид азота (II) NO –  это несолеобразующий оксид.  В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

 

Способы получения

 

1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.

Например, при действии 30 %-ной азотной кислоты на медь образуется NO:

3Cu   +   HNO3(разб.)  →  3Cu(NO3)2   +  2NO  + 4H2O

Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:

FeCl2    +     NaNO3   +   2HCl   →   FeCl3   +   NaCl    +  NO   +   H2O

  2HNO3   +  2HI   →   2NO   +   I2    +   2H2O

 

2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:

N2   +   O2  →   2NO

 

3. В промышленности оксид азота (II) получают каталитическим окислением аммиака:

4NH3    +   5O2    →    4NO  +   6H2O

 

Химические свойства

 

1. Оксид азота (II) легко окисляется под действием окислителей.

Например, горит в атмосфере кислорода:

2NO    +   O2   →   2NO2

Оксид азота (II) легко окисляется под действием хлора или озона:

2NO   +   Cl2  →  2NOCl

NO   +  O3  →   NO2   +   O2

 

2. В присутствии более сильных восстановителей проявляет свойства окислителя. В атмосфере оксида азота (II) могут гореть водород, углерод и т.п.

Например, оксид азота (II) окисляет водород и сернистый газ:

2NO   +   2H →  N2   +   2H2O

2NO   +  2SO2   →   2SO3   +   N2

3. Как несолеобразующий оксид, при обычных условиях с основаниями, основными оксидами, амфотерными оксидами, кислотными оксидами, кислотами и амфотерными гидроксидами оксид азота (II) не реагирует:

NO   +   NaOH  

NO   +   KOH  

NO   +   Na2O  

NO   +   CO2  

NO   +   HCl  

Маркировка конденсаторов.

Правила маркировки конденсаторов постоянной ёмкости

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

  • Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.

  • Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

  • Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Допуск в %Буквенное обозначение
лат.рус.
± 0,05pA 
± 0,1pBЖ
± 0,25pCУ
± 0,5pDД
± 1,0FР
± 2,0GЛ
± 2,5H 
± 5,0JИ
± 10KС
± 15L 
± 20MВ
± 30NФ
-0…+100P 
-10…+30Q 
± 22S 
-0…+50T 
-0…+75UЭ
-10…+100WЮ
-20…+5YБ
-20…+80ZА

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Номинальное рабочее напряжение, B Буквенный код
1,0I
1,6R
2,5M
3,2A
4,0C
6,3B
10D
16E
20F
25G
32H
40S
50J
63K
80L
100N
125P
160Q
200Z
250W
315X
350T
400Y
450U
500V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Оксид азота(I) — это… Что такое Оксид азота(I)?

Оксонитри́д азо́та(I) (оксид диазота, закись азота, окись азота, веселящий газ) — соединение с химической формулой N2O. Иногда называется «веселящим газом» из-за производимого им опьяняющего эффекта. При нормальной температуре это бесцветный негорючий газ с приятным сладковатым запахом и привкусом.

Закись азота является озоноразрушающим веществом, а также парниковым газом.

Получение

Закись азота получают нагреванием сухого нитрата аммония. Разложение начинается при 170 °C и сопровождается выделением тепла. Поэтому, чтобы не дать протекать ему слишком бурно, следует вовремя прекратить нагревание, так как при температурах более 300 °C нитрат аммония разлагается со взрывом:

Более удобным способом является нагревание сульфаминовой кислоты с 73%-й азотной кислотой:

В химической промышленности закись азота является побочным продуктом и для её разрушения используют каталитические конвертеры, так как выделение в виде товарного продукта, как правило, экономически нецелесообразно.

История

Впервые был получен в 1772 году Джозефом Пристли, который назвал его «флогистированным нитрозным воздухом»[1].

Физические свойства

Бесцветный газ, тяжелее воздуха (относительная плотность 1,527), с характерным сладковатым запахом. Растворим в воде (0,6 объёма N2O в 1 объёме воды при 25 °C, или 0,15 г/100 мл воды при 15 °C), растворим также в этиловом спирте, эфире, серной кислоте. При 0 °C и давлении 30 атм, а также при комнатной температуре и давлении 40 атм сгущается в бесцветную жидкость. Из 1 кг жидкой закиси азота образуется 500 л газа. Молекула закиси азота имеет дипольный момент 0,166 Д, коэффициент преломления в жидком виде равен 1,330 (для жёлтого света с длиной волны 589 нм). Давление паров жидкого N2O при 20 °C равно 5150 кПа.

Химические свойства

Относится к несолеобразующим оксидам, с водой, с растворами щелочей и кислот не взаимодействует. Не воспламеняется, но поддерживает горение. Смеси с эфиром, циклопропаном, хлорэтилом в определённых концентрациях взрывоопасны. В нормальных условиях N2O химически инертен, при нагревании проявляет свойства окислителя:

При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя:

При нагревании N2O разлагается:

Применение

Существует два вида закиси азота — пищевая или медицинская для медицинского применения (высокой степени очистки) и техническая — технический оксид диазота, в котором есть примеси, количество которых указывается в соответствующих техусловиях (ТУ) на данный газ. Медицинская закись азота используется в основном как средство для ингаляционного наркоза, в основном в сочетании с другими препаратами (из-за недостаточно сильного обезболивающего действия), находит применение и в пищевой промышленности, например при производстве взбитых сливок в качестве пропеллента. Как пищевой продукт, имеет индекс E942. Также иногда используется для улучшения технических характеристик двигателей внутреннего сгорания, В промышленности применяется как пропеллент и упаковочный газ. Может использоваться в ракетных двигателях в качестве окислителя, а также как единственное топливо в монокомпонентных ракетных двигателях.

Средство для ингаляционного наркоза

Малые концентрации закиси азота вызывают чувство опьянения (отсюда название — «веселящий газ») и лёгкую сонливость. При вдыхании чистого газа быстро развиваются состояние наркотического опьянения, а затем асфиксия. В смеси с кислородом при правильном дозировании кислорода и закиси азота вызывает наркоз. Закись азота обладает слабой наркотической активностью, в связи с чем её необходимо применять в больших концентрациях. В большинстве случаев применяют комбинированный наркоз, при котором закись азота сочетают с другими, более мощными, средствами для наркоза, а также с миорелаксантами.

Закись азота, предназначенная для медицинских нужд (высокой степени очистки от примесей), не вызывает раздражения дыхательных путей. Будучи, в процессе вдыхания, растворенной в плазме крови, практически не изменяется и не метаболизируется, с гемоглобином не связывается. После прекращения вдыхания выделяется (в течение 10—15 мин) через дыхательные пути в неизменном виде. Период полувыведения — 5 минут.

Наркоз с применением закиси азота используется в хирургической практике, оперативной гинекологии, хирургической стоматологии, а также для обезболивания родов. «Лечебный анальгетический наркоз» (Б. В. Петровский, С. Н. Ефуни) с использованием смеси закиси азота и кислорода иногда применяют в послеоперационном периоде для профилактики травматического шока, а также для купирования болевых приступов при острой коронарной недостаточности, инфаркте миокарда, остром панкреатите и других патологических состояниях, сопровождающихся болями, не купирующимися обычными средствами.

Применяют закись азота в смеси с кислородом при помощи специальных аппаратов для газового наркоза. Обычно начинают со смеси, содержащей 70—80 % закиси азота и 30—20 % кислорода, затем количество кислорода увеличивают до 40—50 %. Если не удается получить необходимую глубину наркоза, при концентрации закиси азота 70—75 %, добавляют более мощные наркотические средства: фторотан, диэтиловый эфир, барбитураты.

Для более полного расслабления мускулатуры применяют миорелаксанты, при этом не только усиливается расслабление мышц, но также улучшается течение наркоза.

После прекращения подачи закиси азота следует во избежание гипоксии продолжать давать кислород в течение 4—5 мин.

Применять закись азота, как и любое средство для наркоза, необходимо с осторожностью, особенно при выраженных явлениях гипоксии и нарушении диффузии газов в лёгких.

Для обезболивания родов пользуются методом прерывистой аутоанальгезии с применением, при помощи специальных наркозных аппаратов, смеси закиси азота (40—75 %) и кислорода. Роженица начинает вдыхать смесь при появлении предвестников схватки и заканчивает вдыхание на высоте схватки или по её окончании.

Для уменьшения эмоционального возбуждения, предупреждения тошноты и рвоты и потенцирования действия закиси азота возможна премедикация внутримышечным введением 0,5%-го раствора диазепама (седуксена, сибазона) в количестве 1—2 мл (5—10 мг), 2—3 мл 0,25%-го раствора дроперидола (5,0—7,5 мг).

Лечебный наркоз закисью азота (при стенокардии и инфаркте миокарда) противопоказан при тяжёлых заболеваниях нервной системы, хроническом алкоголизме, состоянии алкогольного опьянения (возможны возбуждение, галлюцинации).

Форма выпуска: в металлических баллонах вместимостью 10 л под давлением 50 атм в сжиженном состоянии. Баллоны окрашены в серый цвет и имеют надпись «Для медицинского применения».

В двигателях внутреннего сгорания

Закись азота иногда используется для улучшения технических характеристик двигателей внутреннего сгорания. В случае автомобильных применений вещество, содержащее закись азота, и горючее впрыскиваются во впускной (всасывающий) коллектор двигателя, что приводит к следующим результатам:

  • снижает температуру всасываемого в двигатель воздуха, обеспечивая плотный поступающий заряд смеси.
  • увеличивает содержание кислорода в поступающем заряде (воздух содержит лишь ~21 масс. % кислорода).
  • повышает скорость (интенсивность) сгорания в цилиндрах двигателя.

См. подробнее: Системы закиси азота.

В пищевой промышленности

В пищевой промышленности соединение зарегистрировано в качестве пищевой добавки E942, как пропеллент и упаковочный газ.

Хранение

Хранение: при комнатной температуре в закрытом помещении, вдали от огня.

См. также

Литература

Навигация

Примечания

Таблица маркировки конденсаторов

Таблица маркировки конденсаторов

Емкость конденсаторов может измеряться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены. Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Проверяет и транзисторы (включая MOSFET), диоды, стабилитроны, кварцы. Тип деталей определяется автоматически и выводит значения на дисплей. В этом обзоре ESR тестер я описывал этот прибор.

 

uF (мкФ) nF (нФ) pF (пФ) Code (Код)
1uF 1000nF 1000000pF 105
0.82uF 820nF 820000pF 824
0.8uF 800nF 800000pF 804
0.7uF 700nF 700000pF 704
0.68uF 680nF 680000pF 624
0.6uF 600nF 600000pF 604
0.56uF 560nF 560000pF 564
0.5uF 500nF 500000pF 504
0.47uF 470nF 470000pF 474
0.4uF 400nF 400000pF 404
0.39uF 390nF 390000pF 394
0.33uF 330nF 330000pF 334
0.3uF 300nF 300000pF 304
0.27uF 270nF 270000pF 274
0.25uF 250nF 250000pF 254
0.22uF 220nF 220000pF 224
0.2uF 200nF 200000pF 204
0.18uF 180nF 180000pF 184
0.15uF 150nF 150000pF 154
0.12uF 120nF 120000pF 124
0.1uF 100nF 100000pF 104
0.082uF 82nF 82000pF 823
0.08uF 80nF 80000pF 803
0.07uF 70nF 70000pF 703
0.068uF 68nF 68000pF 683
0.06uF 60nF 60000pF 603
0.056uF 56nF 56000pF 563
0.05uF 50nF 50000pF 503
0.047uF 47nF 47000pF 473
0.04uF 40nF 40000pF 403
0.039uF 39nF 39000pF 393
0.033uF 33nF 33000pF 333
0.03uF 30nF 30000pF 303
0.027uF 27nF 27000pF 273
0.025uF 25nF 25000pF 253
0.022uF 22nF 22000pF 223
0.02uF 20nF 20000pF 203
0.018uF 18nF 18000pF 183
0.015uF 15nF 15000pF 153
0.012uF 12nF 12000pF 123
0.01uF 10nF 10000pF 103
0.0082uF 8.2nF 8200pF 822
0.008uF 8nF 8000pF 802
0.007uF 7nF 7000pF 702
0.0068uF 6.8nF 6800pF 682
0.006uF 6nF 6000pF 602
0.0056uF 5.6nF 5600pF 562
0.005uF 5nF 5000pF 502
0.0047uF 4.7nF 4700pF 472
0.004uF 4nF 4000pF 402
0.0039uF 3.9nF 3900pF 392
0.0033uF 3.3nF 3300pF 332
0.003uF 3nF 3000pF 302
0.0027uF 2.7nF 2700pF 272
0.0025uF 2.5nF 2500pF 252
0.0022uF 2.2nF 2200pF 222
0.002uF 2nF 2000pF 202
0.0018uF 1.8nF 1800pF 182
0.0015uF 1.5nF 1500pF 152
0.0012uF 1.2nF 1200pF 122
0.001uF 1nF 1000pF 102
0.00082uF 0.82nF 820pF 821
0.0008uF 0.8nF 800pF 801
0.0007uF 0.7nF 700pF 701
0.00068uF 0.68nF 680pF 681
0.0006uF 0.6nF 600pF 621
0.00056uF 0.56nF 560pF 561
0.0005uF 0.5nF 500pF 52
0.00047uF 0.47nF 470pF 471
0.0004uF 0.4nF 400pF 401
0.00039uF 0.39nF 390pF 391
0.00033uF 0.33nF 330pF 331
0.0003uF 0.3nF 300pF 301
0.00027uF 0.27nF 270pF 271
0.00025uF 0.25nF 250pF 251
0.00022uF 0.22nF 220pF 221
0.0002uF 0.2nF 200pF 201
0.00018uF 0.18nF 180pF 181
0.00015uF 0.15nF 150pF 151
0.00012uF 0.12nF 120pF 121
0.0001uF 0.1nF 100pF 101
0.000082uF 0.082nF 82pF 820
0.00008uF 0.08nF 80pF 800
0.00007uF 0.07nF 70pF 700
0.000068uF 0.068nF 68pF 680
0.00006uF 0.06nF 60pF 600
0.000056uF 0.056nF 56pF 560
0.00005uF 0.05nF 50pF 500
0.000047uF 0.047nF 47pF 470
0.00004uF 0.04nF 40pF 400
0.000039uF 0.039nF 39pF 390
0.000033uF 0.033nF 33pF 330
0.00003uF 0.03nF 30pF 300
0.000027uF 0.027nF 27pF 270
0.000025uF 0.025nF 25pF 250
0.000022uF 0.022nF 22pF 220
0.00002uF 0.02nF 20pF 200
0.000018uF 0.018nF 18pF 180
0.000015uF 0.015nF 15pF 150
0.000012uF 0.012nF 12pF 120
0.00001uF 0.01nF 10pF 100
0.000008uF 0.008nF 8pF 080
0.000007uF 0.007nF 7pF 070
0.000006uF 0.006nF 6pF 060
0.000005uF 0.005nF 5pF 050
0.000004uF 0.004nF 4pF 040
0.000003uF 0.003nF 3pF 030
0.000002uF 0.002nF 2pF 020
0.000001uF 0.001nF 1pF 010

Очень часто для проведения ремонтных работ в электронных устройствах, необходимо иметь в запасе конденсаторы различных номиналов. Так как в магазине зачастую на все случаи жизни приобрести нет возможности, поэтому в большинстве случаев заказываю у китайских товарищей на площадке Aliexpress. В продаже имеются также в большем асортименте электролитические конденсаторы. Можно приобрести набором по 10-20 различных номиналов.

 

Конденсаторы на Aliexpress

Автор: silver от 14-04-2017, посмотрело: 92046

Категория: Ремонт

Комментарии: 0

Оставить комментарии к этой записи

2N — Мировой лидер рынка IP-домофонов

2N — Мировой лидер IP-домофонов — 2N Перейти к содержанию

Новый 2N on Air уже скоро! Мы начнем 12 ноября ровно в 10:00 по центральноевропейскому времени.

2N в прямом эфире идет прямая трансляция

Трансляция с участием ведущих специалистов 2N.Мы начнем в 10:00 по центральноевропейскому времени 12 ноября. Сделайте заметку в своем календаре!

Считай меня в

Первоклассный дизайн и бесчисленное количество функций

Домофон 2N® IP Verso — идеальное решение для вашего жилого проекта.

Откройте для себя возможности

Знаете ли вы о нашем решении для контроля доступа к лифтам?

Это ограничивает доступ к отдельным этажам в здании.Только когда вы его получите, ваше решение для контроля доступа будет полным.

Подробнее о решении

Станьте экспертом в области продуктов 2N

Мы запустили несколько интерактивных обучающих курсов.Докажите своим клиентам, что вы знаете о нашей продукции абсолютно все.

Я хочу сертификат

Истории успеха клиентов

Узнайте, как 2N помогла своим клиентам решить их потребности и добиться успеха в сегодняшнем непростом мире.

Подробнее

Квантовые числа и электронные конфигурации

Квантовые числа и электронные конфигурации

Квантовые числа и электрон Конфигурации


Квантовые числа

Модель Бора была одномерной моделью, которая использовала одно квантовое число для описания распределение электронов в атоме. Единственная важная информация — это размер . орбиты, которая описывалась квантовым числом n .Модель Шредингера позволил электрону занять трехмерное пространство. Следовательно, потребовалось три координаты, или три квантовых числа , для описания орбиталей, на которых электроны может быть найден.

Три координаты, которые происходят из волновых уравнений Шредингера, являются главными ( n ), угловые ( l ) и магнитные ( m ) квантовые числа. Эти квантовые числа описывают размер, форму и ориентацию в пространстве орбиталей атома.

Главное квантовое число ( n ) описывает размер орбитали. Например, орбитали, для которых n = 2, больше, чем те, для которых n = 1. Поскольку они имеют противоположные электрические заряды, электроны притягиваются к ядру атом. Следовательно, для возбуждения электрона с орбитали, на которой электрон приближается к ядру ( n = 1) на орбиталь, в которой он находится дальше из ядра ( n = 2).Поэтому главное квантовое число косвенно описывает энергию орбитали.

Угловое квантовое число ( 1 ) описывает форму орбитали. Орбитали имеют форму, которую лучше всего описать как сферическую ( l = 0), полярную ( l = 0). = 1) или клеверный лист ( l = 2). Они могут даже принимать более сложные формы, поскольку углового квантового числа становится больше.

Существует только один способ ориентирования сферы ( l = 0) в пространстве.Однако орбитали полярной ( l = 1) или клеверной ( l = 2) формы могут указывают в разные стороны. Поэтому нам нужно третье квантовое число, известное как магнитное число . квантовое число ( м ), чтобы описать ориентацию в пространстве определенного орбитальный. (Его называют магнитным квантовым числом , потому что влияние различных ориентации орбиталей впервые наблюдались в присутствии магнитного поля.)


Правила, регулирующие допустимые комбинации Квантовые числа

  • Три квантовых числа ( n , l и m ), описывающие орбитальную являются целыми числами: 0, 1, 2, 3 и т. д.
  • Главное квантовое число ( n ) не может быть нулевым. Допустимые значения n поэтому равны 1, 2, 3, 4 и так далее.
  • Угловое квантовое число ( l ) может быть любым целым числом от 0 до n — 1. Если n = 3, например, l может быть 0, 1 или 2.
  • Магнитное квантовое число ( m ) может быть любым целым числом от — l и + l . Если l = 2, m может быть -2, -1, 0, +1 или +2.


Оболочки и подоболочки орбиталей

Орбитали с одинаковым значением главного квантового числа образуют оболочку .Орбитали внутри оболочки делятся на подоболочки , которые имеют одинаковое значение угловое квантовое число. Химики описывают оболочку и подоболочку, в которых орбитальный принадлежит с двухсимвольным кодом, например 2 p или 4 f . Первый персонаж обозначает оболочку ( n = 2 или n = 4). Второй символ обозначает подоболочка. По соглашению следующие строчные буквы используются для обозначения различных подоболочки.

с : л = 0
п. : л = 1
д : л = 2
f : л = 3

Хотя в первых четырех буквах нет шаблона ( s , p , d , f ), буквы идут в алфавитном порядке с этой точки ( g , h и т. д.).Некоторые допустимых комбинаций квантовых чисел n и l показаны в рисунок ниже.

Третье правило, ограничивающее допустимые комбинации n , l и m квантовые числа имеют важное следствие. Он заставляет количество подоболочек в оболочке быть равным главному квантовому числу оболочки. Корпус n = 3, для Например, содержит три подоболочки: 3 s , 3 p и 3 d орбиталей.


Возможные комбинации квантовых чисел

В оболочке n = 1 только одна орбиталь, потому что в ней есть только один путь. который сфера может быть ориентирована в пространстве. Единственная допустимая комбинация квантовых чисел для которого n = 1 следующее.

В оболочке n = 2 четыре орбитали.

2 1 -1
2 1 0 2п
2 1 1

В подоболочке 2 s есть только одна орбиталь.Но есть три орбитали в подоболочка 2 p , потому что есть три направления, в которых орбитальная оболочка p может точка. Одна из этих орбиталей ориентирована по оси X , другая — по оси Y . ось, а третья — по оси Z системы координат, как показано на рисунке ниже. Следовательно, эти орбитали известны как 2 p x , 2 p y , и 2 p z орбиталей.

В оболочке n = 3 девять орбиталей.

n л м
3 0 0 3 с
3 1–1
3 1 0 3 п
3 1 1
3 2-2
3 2–1 3 г
3 2 0
3 2 1
3 2 2

В подоболочке 3 s имеется одна орбиталь, а в подоболочке 3 p — три орбитали. подоболочка.Однако оболочка n = 3 также включает 3 орбитали d .

Пять различных ориентаций орбиталей в подоболочке 3 d показаны на рисунок ниже. Одна из этих орбиталей лежит в плоскости XY самолета XYZ . системы координат и называется орбитальной 3 d xy . 3 d xz и 3 d yz орбитали имеют одинаковую форму, но лежат между осями система координат в плоскостях XZ и YZ .Четвертая орбиталь в этом подоболочка лежит вдоль осей X и Y и называется 3 d x 2 y 2 орбитальный. Большая часть пространства, занимаемого пятой орбиталью, лежит вдоль оси Z и эта орбиталь называется орбиталью 3 d z 2 .

Количество орбиталей в оболочке — квадрат главного квантового числа: 1 2 = 1, 2 2 = 4, 3 2 = 9.В подоболочке s ( l ) имеется одна орбиталь. = 0), три орбитали в подоболочке p ( l = 1) и пять орбиталей в d подоболочка ( l = 2). Таким образом, количество орбиталей в подоболочке равно 2 ( l ) + 1.

Прежде чем мы сможем использовать эти орбитали, нам нужно знать количество электронов, которые могут занимают орбиталь и как их можно отличить друг от друга. Экспериментальный данные свидетельствуют о том, что орбиталь может содержать не более двух электронов.

Чтобы различать два электрона на орбитали, нам нужен четвертый квант число. Это называется спиновым квантовым числом ( s ), потому что электроны ведут себя как если бы они вращались либо по часовой стрелке, либо против часовой стрелки. Один из электронам на орбитали произвольно приписывается квантовое число с +1/2, другому присваивается квантовое число с -1/2. Таким образом, требуется три квантовых числа чтобы определить орбитальное, но четыре квантовых числа, чтобы идентифицировать один из электронов, который может занимают орбиталь.

Допустимые комбинации квантовых чисел n , l и m для Первые четыре снаряда приведены в таблице ниже. Для каждой из этих орбиталей есть два допустимые значения квантового числа спина, с .


Сводка допустимых комбинаций квантовых Номера

n л м Обозначение подоболочки Число орбиталей в подоболочке Число электронов, необходимых для заполнения подоболочки Общее количество электронов в подоболочке
1 0 0 1 с 1 2 2
2 0 0 1 2
2 1 1,0, -1 2п 3 6 8
3 0 0 1 2
3 1 1,0, -1 3п 3 6
3 2 2,1,0, -1, -2 5 10 18
4 0 0 1 2
4 1 1,0, -1 4п 3 6
4 2 2,1,0, -1, -2 5 10
4 3 3,2,1,0, -1, -2, -3 4f 7 14 32


Относительные энергии атомных орбиталей

Из-за силы притяжения между объектами с противоположным зарядом наибольшая важным фактором, влияющим на энергию орбитали, является ее размер и, следовательно, значение главного квантового числа n .Для атома, содержащего только один электрон, нет никакой разницы между энергиями различных подоболочек внутри оболочки. В 3 s , 3 p и 3 d орбитали, например, имеют одинаковую энергию в атом водорода. Модель Бора, которая определяла энергии орбит в терминах ничего больше, чем расстояние между электроном и ядром, поэтому работает для этого атом.

Однако атом водорода необычен.Как только атом содержит более одного электрона, разные подоболочки больше не имеют одинаковой энергии. Внутри данной оболочки орбитали s всегда имеют самую низкую энергию. Энергия подоболочек постепенно становится больше по мере увеличения значения углового квантового числа.

Относительные энергии: с < p < d < f

В результате два фактора контролируют энергию орбиты для большинства атомы: размер орбитали и ее форма, как показано на рисунке ниже.

Можно сконструировать очень простое устройство для оценки относительной энергии атомных орбиталей. Допустимые комбинации квантов n и l числа организованы в таблицу, как показано на рисунке ниже, а стрелки нарисованы на 45 углы градусов, указывающие на нижний левый угол таблицы.

Затем считывают порядок увеличения энергии орбиталей, следуя этим стрелки, начиная с верхней части первой строки и затем переходя ко второй, третьей, четвертые строки и так далее.Эта диаграмма предсказывает следующий порядок увеличения энергии для атомных орбиталей.

1 с <2 с <2 с <3 с <3 с <4 с <3 с <4 с <5 с <4 с <5 с <6 с <4 с <5 с <6 с <7 с <5 с <6 d <7 p <8 s


Электронные конфигурации, принцип Ауфбау, Вырожденные орбитали и правило Хунда

Электронная конфигурация атома описывает орбитали, занятые электроны на атоме. В основе этого прогноза лежит правило, известное как aufbau. принцип , который предполагает, что электроны добавляются к атому по одному, начиная с самой низкой энергетической орбиталью, пока все электроны не будут помещены в соответствующий орбитальный.

Атом водорода ( Z = 1) имеет только один электрон, который переходит в наименьшую энергию орбитальный, 1 s орбитальный . На это указывает надстрочный индекс «1». после символа орбиты.

H ( Z = 1): 1 с 1

Следующий элемент имеет два электрона, и второй электрон заполняет орбиталь 1 s потому что есть только два возможных значения спинового квантового числа, используемого для различения между электронами на орбитали.

He ( Z = 2): 1 с 2

Третий электрон переходит на следующую орбиталь на энергетической диаграмме, 2 с орбитальный.

Li ( Z = 3): 1 с 2 2 с 1

Четвертый электрон заполняет эту орбиталь.

Be ( Z = 4): 1 с 2 2 с 2

После заполнения орбиталей 1 с и 2 с , следующая наименьшая энергия орбитали — это три орбитали 2 p .Пятый электрон, следовательно, переходит в один из эти орбитали.

B ( Z = 5): 1 с 2 2 с 2 2 p 1

Когда приходит время добавить шестой электрон, конфигурация электронов очевидна.

C ( Z = 6): 1 с 2 2 с 2 2 p 2

Однако в подоболочке 2 p есть три орбитали.Второй электрон идет на ту же орбиталь, что и первая, или переходит на одну из других орбиталей в эта подоболочка?

Чтобы ответить на этот вопрос, нам нужно понять концепцию вырожденных орбиталей . От По определению, орбитали вырождены , когда они имеют одинаковую энергию. Энергия орбиталь зависит как от ее размера, так и от формы, потому что электрон тратит больше время дальше от ядра атома по мере того, как орбиталь становится больше или форма становится более сложным.Однако в изолированном атоме энергия орбитали не зависят от направления, в котором он указывает в пространстве. Орбитали, которые отличаются только своим ориентация в пространстве, например 2 p x , 2 p y и 2 p z орбитали, следовательно, вырождены.

Электроны заполняют вырожденные орбитали в соответствии с правилами, впервые сформулированными Фридрихом Хундом. Hund’s правила можно резюмировать следующим образом.

  • Один электрон добавляется к каждой из вырожденных орбиталей в подоболочке перед двумя электроны добавляются к любой орбитали подоболочки.
  • Электроны добавляются к подоболочке с тем же значением спинового квантового числа, пока каждая орбиталь подоболочки имеет по крайней мере один электрон.

Когда приходит время поместить два электрона в подоболочку 2 p , мы помещаем один электрон на каждую из двух орбиталей.(Выбор между 2 р х , 2 p y и 2 p z орбитали являются произвольными.)

C ( Z = 6): 1 с 2 2 с 2 2 p x 1 2 п л 1

Тот факт, что оба электрона в подоболочке 2 p имеют одинаковый спин квантовое число можно показать, представив электрон, для которого s = +1/2 с

стрелка вверх и электрон, для которого с = -1/2 со стрелкой, указывающей вниз.

Электроны на орбиталях 2 p на углероде, следовательно, могут быть представлены как следует.

Когда мы дойдем до N ( Z = 7), мы должны поместить по одному электрону в каждый из трех вырожденные 2 p орбитали.

N ( Z = 7): 1 с 2 2 с 2 2 p 3

Поскольку каждая орбиталь в этой подоболочке теперь содержит один электрон, следующий электрон добавленный к подоболочке должен иметь противоположное квантовое число спина, тем самым заполняя орбитали 2 p .

O ( Z = 8): 1 с 2 2 с 2 2 с 4

Девятый электрон заполняет вторую орбиталь этой подоболочки.

F ( Z = 9): 1 с 2 2 с 2 2 p 5

Десятый электрон завершает подоболочку 2 p .

Ne ( Z = 10): 1 с 2 2 с 2 2 p 6

Есть что-то необычно стабильное в атомах, таких как He и Ne, у которых есть электроны. конфигурации с заполненными оболочками орбиталей.Поэтому по соглашению мы пишем сокращенные электронные конфигурации с точки зрения количества электронов за пределами предыдущий элемент с электронной конфигурацией заполненной оболочки. Электронные конфигурации следующие два элемента в периодической таблице, например, можно было бы записать следующим образом.

Na ( Z = 11): [Ne] 3 с 1

Mg ( Z = 12): [Ne] 3 с 2

Процесс aufbau можно использовать для прогнозирования электронной конфигурации элемента.Фактическая конфигурация, используемая элементом, должна быть определена экспериментально. В экспериментально определенные электронные конфигурации для элементов первых четырех рядов периодической таблицы Менделеева приведены в таблице в следующем разделе.


Электронные конфигурации элементов

(элементы 1, 2, 3 и 4 ряда)

Атомный номер Символ Электронная конфигурация
1 H 1 с 1
2 He 1 s 2 = [He]
3 Li [He] 2 s 1
4 Be [He] 2 s 2
5 B [He] 2 s 2 2 p 1
6 С [He] 2 s 2 2 p 2
7 N [He] 2 s 2 2 p 3
8 O [He] 2 s 2 2 p 4
9 F [He] 2 s 2 2 p 5
10 Ne [He] 2 s 2 2 p 6 = [Ne]
11 Na [Ne] 3 с 1
12 мг [Ne] 3 с 2
13 Al [Ne] 3 с 2 3 с 1
14 Si [Ne] 3 с 2 3 с 2
15-П, [Ne] 3 с 2 3 с 3
16 S [Ne] 3 с 2 3 с 4
17 Класс [Ne] 3 с 2 3 с 5
18 Ar [Ne] 3 с 2 3 p 6 = [Ar]
19 К [Ar] 4 с 1
20 Ca [Ar] 4 с 2
21 SC [Ar] 4 с 2 3 d 1
22 Ti [Ar] 4 с 2 3 d 2
23 В [Ar] 4 с 2 3 d 3
24 Cr [Ar] 4 s 1 3 d 5
25 Mn [Ar] 4 с 2 3 d 5
26 Fe [Ar] 4 с 2 3 d 6
27 Co [Ar] 4 с 2 3 d 7
28 Ni [Ar] 4 с 2 3 d 8
29 Cu [Ar] 4 s 1 3 d 10
30 Zn [Ar] 4 с 2 3 d 10
31 Ga [Ar] 4 с 2 3 d 10 4 p 1
32 Ge [Ar] 4 с 2 3 d 10 4 p 2
33 как [Ar] 4 с 2 3 d 10 4 p 3
34 SE [Ar] 4 с 2 3 d 10 4 p 4
35 Br [Ar] 4 с 2 3 d 10 4 p 5
36 Кр [Ar] 4 s 2 3 d 10 4 p 6 = [Kr]


Исключения из прогнозируемых электронных конфигураций

Есть несколько шаблонов в электронных конфигурациях, перечисленных в таблице в предыдущий раздел.Одним из наиболее поразительных является поразительный уровень согласия между эти конфигурации и конфигурации, которые мы могли бы спрогнозировать. Есть только два Исключения среди первых 40 элементов: хром и медь.

Строгое соблюдение правил процесса aufbau предсказывает следующее: электронные конфигурации для хрома и меди.

предсказанных электронных конфигураций: Cr ( Z = 24): [Ar] 4 s 2 3 d 4
Cu ( Z = 29): [Ar] 4 с 2 3 d 9

Экспериментально определенные конфигурации электронов для этих элементов слегка разные.

фактических электронных конфигураций: Cr ( Z = 24): [Ar] 4 s 1 3 d 5
Cu ( Z = 29): [Ar] 4 s 1 3 d 10

В каждом случае один электрон был переведен с орбитали 4 s на орбиталь 3 d орбитали, хотя предполагается, что орбитали 3 d находятся на более высоком уровне, чем 4 с орбитальный.

Как только мы выйдем за пределы атомного номера 40, разница между энергиями соседних орбитали достаточно малы, чтобы переносить электрон с одного орбитально к другому. Большинство исключений из электронной конфигурации, предсказанных из поэтому показанная ранее диаграмма aufbau встречается среди элементов с атомными номерами больше 40. Хотя заманчиво сосредоточить внимание на горстка элементов, электронные конфигурации которых отличаются от предсказанных с диаграммой aufbau удивительно то, что эта простая диаграмма работает для очень многих элементы.


Электронные конфигурации и периодическая таблица

Когда данные электронной конфигурации расположены так, что мы можем сравнивать элементы в одном из горизонтальные строки периодической таблицы, мы обнаруживаем, что эти строки обычно соответствуют заполнение оболочки орбиталей. Вторая строка, например, содержит элементы в которой заполнены орбитали в оболочке n = 2.

Li ( Z = 3): [He] 2 s 1
Be ( Z = 4): [He] 2 s 2
B ( Z = 5): [He] 2 s 2 2 p 1
C ( Z = 6): [He] 2 s 2 2 p 2
N ( Z = 7): [He] 2 s 2 2 p 3
O ( Z = 8): [He] 2 s 2 2 p 4
F ( Z = 9): [He] 2 s 2 2 p 5
Ne ( Z = 10): [He] 2 s 2 2 p 6

В вертикальных столбцах или группах периодических стол тоже.Элементы в группе имеют схожую конфигурацию самых внешних электроны. Это соотношение можно увидеть, посмотрев на электронные конфигурации элементы в столбцах по обе стороны периодической таблицы.

Группа IA Группа VIIA
H 1 с 1
Li [He] 2 s 1 F [He] 2 s 2 2 p 5
Na [Ne] 3 с 1 Класс [Ne] 3 с 2 3 с 5
К [Ar] 4 с 1 Br [Ar] 4 с 2 3 d 10 4 p 5
руб. [Kr] 5 с 1 I [Kr] 5 s 2 4 d 10 5 p 5
CS [Xe] 6 с 1 по адресу [Xe] 6 s 2 4 f 14 5 d 10 6 p 5

На рисунке ниже показана связь между периодической таблицей и орбиталями. заполняется во время процесса aufbau.Два столбца в левой части периодической таблица соответствует заполнению орбитали s . Следующие 10 столбцов включают элементы, в которых заполнены пять орбиталей в подоболочке d . Шесть столбцов на справа представляют заполнение трех орбиталей в подоболочке p . Наконец, 14 столбцов внизу таблицы соответствуют заполнению семи орбиталей в подоболочка f .


CS231n Сверточные нейронные сети для визуального распознавания

Содержание:

Настройка данных и модели

В предыдущем разделе мы представили модель нейрона, которая вычисляет скалярное произведение после нелинейности, и нейронные сети, которые упорядочивают нейроны по слоям.Вместе эти варианты определяют новую форму функции оценки , которую мы расширили от простого линейного отображения, которое мы видели в разделе линейной классификации. В частности, нейронная сеть выполняет последовательность линейных отображений с переплетенными нелинейностями. В этом разделе мы обсудим дополнительные варианты дизайна, касающиеся предварительной обработки данных, инициализации весов и функций потерь.

Предварительная обработка данных

Существует три распространенных формы предварительной обработки данных матрицы X , где мы будем предполагать, что X имеет размер [N x D] ( N — количество данных, D — их размерность. ).

Среднее вычитание — наиболее распространенная форма предварительной обработки. Он включает вычитание среднего значения по каждой отдельной характеристике в данных и имеет геометрическую интерпретацию центрирования облака данных вокруг начала координат по каждому измерению. В numpy эта операция будет реализована как: X - = np.mean (X, axis = 0) . В частности, с изображениями для удобства можно вычесть одно значение из всех пикселей (например, X - = np.mean (X) ), или сделать это отдельно по трем цветовым каналам.

Нормализация относится к нормализации измерений данных, чтобы они имели примерно одинаковый масштаб. Есть два распространенных способа достижения этой нормализации. Один состоит в том, чтобы разделить каждое измерение на его стандартное отклонение после того, как оно было отцентрировано: ( X / = np.std (X, axis = 0) ). Другая форма этой предварительной обработки нормализует каждое измерение так, чтобы минимальное и максимальное значения по измерению равнялись -1 и 1 соответственно.Применять эту предварительную обработку имеет смысл только в том случае, если у вас есть причина полагать, что разные входные функции имеют разные масштабы (или единицы), но они должны иметь примерно равное значение для алгоритма обучения. В случае изображений относительные масштабы пикселей уже примерно равны (и находятся в диапазоне от 0 до 255), поэтому выполнять этот дополнительный этап предварительной обработки не обязательно.

Конвейер предварительной обработки общих данных. Слева : Оригинальная игрушка, 2-хмерные исходные данные. Среднее значение : данные центрируются по нулю путем вычитания среднего значения по каждому измерению. Облако данных теперь сосредоточено вокруг источника. Справа : Каждый размер дополнительно масштабируется на его стандартное отклонение. Красные линии показывают объем данных — они неравной длины в середине, но одинаковой длины справа.

PCA и отбеливание — еще одна форма предварительной обработки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *