Изменение степени сжатия. От отношения каких параметров зависит степень сжатия двигателя


Изменение степени сжатия и степень сжатия турбо двигателя.

Изменение степени сжатия и степень сжатия турбо двигателя.

После того как мы определились со степенью сжатия перед нами стоит вопрос как правильно добиться нужной нам степени сжатия. Для начала нужно рассчитать на сколько необходимо увеличить камеру сгорания. Это не сложно. Формула для вычисления степени сжатия имеет следующий вид: Ɛ=(VP+VB)/VB Где Ɛ— степень сжатия VP - рабочий объём VB - объём камеры сгорания

Преобразовав уравнение можно получить формулу для вычисления камеры сгорания при известной степени сжатия. VB=VP1/Ɛ Где VP1 - объём одного цилиндра

По этой формуле вычисляем объём имеющейся камеры сгорания и вычитаем из него объём желаемой (вычисленный по той же формуле), полученная разница и есть интересующее на значение на которое и нужно увеличить камеру сгорания.

Существуют разнообразнве способы увеличения камеры сгорания но далеко не все из них верные. Камера сгорания современного автомобиля спроектирована таким образом, что при достижении поршнем ВМТ топливо воздушная смесь вытесняется к центру камеры сгорания. Это пожалуй самая действенная разработка препятствующая детонации.

Самостоятельная доработка камеры в ГБЦ под силу далеко не многим. Это обусловлено тем, что вопервых вы можите нарушить спроектированную форму камеры, так же при доработке могут «вскрыться» стенки т.к. не известна их толщина. Так же не рекомендуется «расжимать мотор» толстыми прокладками т.к. Это нарушит процессы вытеснения в камере сгорания. Наиболее простым и правельным способом считается установка новых поршней в которых задан необходимый объём камеры. Для турбо-двигателя сферическая форма считается наиболее эффективной. Лучше использовать для этих целей специально разработанные и изготовленные поршни. Возможен вариант самостоятельной доработки стоковых поршней. Но сдесь нужно учесть что толщина дна поршня не должна быть меньше 6% от диаметра.

Степень сжатия в турбо двигателе

Одной из самых важных и пожалуй самой сложной задачей при проектировании турбодвигателя является принятие решения о степени сжатия. Этот параметр влияет на большое количество факторов в общей характеристике автомобиля. Мощность, экономичность, приёмистость, детонационная стойкость (параметр от которого сильно зависит эксплуатационная надёжность двигателя в целом), все эти факторы в значительной степени определяются степенью сжатия. Также это влияет на расход топлива и состав отработавших газов. В теории, степень сжатия для турбо-мотора рассчитать не составляет большого труда.

Сначала разберём понятие «Сжатие» или «Геометрическая степень сжатия». Оно представляет собой отношение полного объёма цилиндра (рабочий объём плюс пространство сжатия, остающееся над поршнем при положении в верхней мёртвой точки (ВМТ)), к чистому пространству сжатия. Формула имеет следующий вид: Ɛ=(VP+VB)/VB

Где Ɛ— степень сжатия VP - рабочий объём VB - объём камеры сгорания

Не нужно забывать о существенных расхождениях между геометрической и фактической степенью сжатия даже на атмосферных моторах. В турбодвигателях к этим же процессам добавляется и предварительно сжатая компрессором смесь. На сколько фактически от этого увеличиться степень сжатия, видно из следующей формулы:Ɛeff=Egeom*k√(PL/PO) Где Ɛeff - эффективное сжатие Ɛgeom - геометрическая степень сжатия Ɛ=(VP+VB)/VB, PL - Давление наддува (абсолютное значение), PO - давление окружающей среды, k - адиабатическая экспонента (числовое значение 1,4)

Эта упрощённая формула будет справедлива при условии, что температура в конце процесса сжатия для двигателей с наддувом и без наддува достигает одинакового значения. Иными словами, чем выше давление наддува, тем меньше возможное геометрическое сжатие. Итак, согласно нашей формуле для атмосферного двигателя со степенью сжатия 10:1 при давлении наддува 0.3 бара степень сжатия следует уменьшить до 8.3:1, при давлении 0.8 бара до 6.6:1. Но, слава богу, это теория. Все современные двигатели с турбонаддувом работают не с такими через мерно низкими значениями. Правильная степень сжатия для работы определяется сложными термодинамическими вычислениями и всесторонними испытаниями. Всё это из области высоких технологий и сложных расчётов, но много тюнинговых моторов собрано на основе некоторого опыта, как собственного, так и взятого за пример, от известных автомобильных производителей. Эти правила будут справедливы в большинстве случаев.

Есть несколько важных факторов влияющих на расчёт степени сжатия и их нужно принимать во внимание при проектировании. Я перечислю наиболее важные. Конечно, это желаемый наддув, октановое число топлива, форма камеры сгорания, эффективность промежуточного охладителя, и, безусловно те мероприятия которые вы в состоянии провести по снижению температурной напряжённости в камере сгорания. Углом опережения зажигания (УОЗ) так же можно частично компенсировать возросшие нагрузки. Но это темы для отдельной разговора, и мы безусловно затронем их позже в следующих статьях.

clubturbo.ru

1. Процесс сжатия воздуха

Для работы турбореактивного двигателя необходима непрерывная подача сжатого воздуха в камеры сгорания. Сжатие воздуха в этих типах двигателей происходит в специальных лопаточных машинах — компрессорах.

Лопаточными машинами компрессоры называются потому, что рабочими элементами в них являются лопатки. Компрессор турбореактивного двигателя приводится во вра­щение газовой турбиной.

При сжатии воздуха температура его повышается на 100—200° С.

В сжатом и подогретом воздухе топливо хорошо испаряется, быстро и полностью сгорает.

На современных турбореактивных двигателях применяются два типа компрессоров: центробежные и осевые. Каждый из них имеет свои преимущества и недостатки.

Степень сжатия

Главной величиной, характеризующей компрессор турбо­реактивного двигателя, является степень повышения давления воздуха в компрессоре, называемая еще степенью сжатия; обозначают ее греческой буквой “эпсилон” - ε.

Степень сжатия компрессора - это отношение давления воздуха на выходе из компрессора к давлению воздуха на входе в него:

Где Р2 – давление на выходе компрессора, Р1 – давление на входе компрессора.

Степень сжатии — величина безразмерная, она показы­вает, во сколько раз повышается давление воздуха в ком­прессоре по сравнению с давлением воздуха перед ним.

Если взять отношение давления воздуха за компрессором к давлению воздуха, окружающего двигатель, то получим степень сжатия двигателя:

Где Р0 – давление атмосферного воздуха.

Чтобы представить себе разницу между этими двумя величинами, подсчитаем их для следующих условий: - ско­рость полета с0 = 0; давление окружающего воздуха РО = 1,033 кг/см2; давление перед компрессором Р1 = 0,92 кг/см2; давление за компрессором Р2 = 4,35 кг/см2. Тогда:

Как видно, εДВИГ меньше εКОМП.

Для современных ТРД величина степени сжатия ком­прессора лежит в пределах от 4,2 до 7,1 (иногда 8).

Степень сжатия двигателя зависит от скорости вращения колеса (ротора) компрессора, от высоты полета (от темпе­ратуры окружающего воздуха) и от скорости полета.

С увеличением скорости вращения колеса компрессора степень сжатия компрессора увеличивается.

В осевом компрессоре с увеличением числа его оборо­тов окружная скорость движения лопаток растет. Вслед­ствие этого увеличиваются силы, сжимающие воздух, и, сле­довательно, давление воздуха, выходящего из компрес­сора.

Так как давление воздуха на входе в компрессор остается постоянным (оно не зависит от скорости вращения колеса компрессора), то степень сжатия компрессора увеличивается.

В центробежном компрессоре с увеличением числа его оборотов растет окружная скорость колеса компрессора. Вследствие этого увеличиваются центробежные силы, сжи­мающие воздух, и, следовательно, давление воздуха, выхо­дящего из компрессора. В результате степень сжатия ком­прессора увеличивается.

Вход воздуха в двигатель

Имея общее представление о работе турбореактивного двигателя и процессах, которые происходят в воздушно-газовом потоке, протекающей через двигатель, рассмотрим теперь более подробно работу отдельных элементов ТРД и процессы, происходящие в них.

Воздухоподводящие или входные каналы служат для подвода воздуха к компрессору с возможно меньшими поте­рями.

Входной канал является частью конструкции самолета или образуется обводами капотов двигателя и самого дви­гателя.

Изменение параметров воздуха во входном канале будет различно в зависимости от условий работы двигателя: на месте или в полете.

Поэтому рассмотрим отдельно эти два случая.

А. Двигатель работает на месте (скорость полета с0 = 0)

При работе двигателя на месте компрессор засасывает воздух из окружающей атмосферы. Скорость воздушного потока при подходе к двигателю возрастает от нуля у невозмущенного воздуха впереди двигателя (сечение 0-0) до скорости с1 на входе в компрессор (сечение 1-1, рис. 1).

Для различных турбореактивных двигателей величина скорости с1 лежит в пределах от 70 до 180 м/сек.

Как показывает опыт, температура и давление воздуха во входном канале падают.

Чтобы понять, почему это происходит, напишем уравне­ние энергии движущегося потока воздуха для сечений 0-0 и 1-1

Где k – показатель адиабаты, R – газовая постоянная, g – ускорение свободного падения.

Так как двигатель работает на месте (неподвижен), то скорость с0 = 0. В этом случае уравнение энергии будет:

Подставив в последнее уравнение численное значениеk, g, R, определим температуру Т1.. Она будет равна:

Из уравнения видно, что температура воздуха на входе в компрессорТ1 должна быть ниже, чем температура окру­жающего воздуха Т0. Для существующих ТРД это падение температуры составляет 8—10°. Разделив все члены этого уравнения на Т0, получим:

Рис.1 Изменение параметров воздуха при работе двигателя на месте.

Заменим отношение температур отношением давлений (считая процесс адиабатическим) и опреде­лим давление воздуха на входе в компрессор:

Так как с1 = 70-180 м/сек, то численная величина ква­дратной скобки будет меньше единицы. Следовательно, дав­ление на входе в компрессор Р1 будет меньше давления окружающего воздуха Р0. Для выполненных ТРД падение давления во входном канале составляет 0,1-0,16 кг/смг.

studfiles.net

Степень сжатия (двигателестроение) - это... Что такое Степень сжатия (двигателестроение)?

У этого термина существуют и другие значения, см. сжатие.

Степень сжатия — отношение объёма надпоршневого пространства цилиндра при положении поршня в нижней мёртвой точке (НМТ) (полный объем цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке (ВМТ), то есть к объёму камеры сгорания.

, где: = диаметр цилиндра; = ход поршня; = объём камеры сгорания, то есть, объём, занимаемый бензовоздушной смесью в конце такта сжатия, непосредственно перед поджиганием искрой; часто определяется не расчётом, а непосредственно измерением из-за сложной формы камеры сгорания.

Увеличение степени сжатия требует использования топлива с более высоким октановым числом (для бензиновых ДВС) во избежание детонации. Повышение степени сжатия в общем случае повышает его мощность, кроме того, увеличивает КПД двигателя как тепловой машины, то есть, способствует снижению расхода топлива.

Степень сжатия, обозначаемая греческой буквой ε, есть величина безразмерная. Связанная с ней величина компрессия зависит от степени сжатия, от природы сжимаемого газа и от условий сжатия. При адиабатическом процессе сжатия воздуха зависимость эта выглядит так: P=Pο*ε^γ, где

γ=1,4 — показатель адиабаты для двухатомных газов (в том числе воздуха), Pο — начальное давление, как правило, принимается равным 1.

Из-за неадиабатичности сжатия в двигателе внутреннего сгорания (теплообмен со стенками, утечки части газа через неплотности, присутствия в нем бензина)сжатие газа считают политропным с показателем политропы n=1.2.

При ε=10 компрессия в лучшем случае должна быть 10^1.2=15.8

Детонация в двигателе — изохорный самоускоряющийся процесс перехода горения топливо-воздушной смеси в детонационный взрыв без совершения работы с переходом энергии сгорания топлива в температуру и давление газов.

Фронт пламени распространяется со скоростью взрыва, то есть превышает скорость распространения звука в данной среде и приводит к сильным ударным нагрузкам на детали цилиндро-поршневой и кривошипно-шатунной групп и вызывает тем самым усиленный износ этих деталей. Высокая температура газов приводит к прогоранию днища поршней и обгоранию клапанов.

Понятие степени сжатия не следует путать с понятием компрессия, которое обозначает (при определённой конструктивно обусловленной степени сжатия) максимальное давление, создаваемое в цилиндре при движении поршня от нижней мёртвой точки (НМТ) до верхней мёртвой точки (ВМТ) (например: степень сжатия — 10:1, компрессия — 14 атм.).

Интересные факты

Двигатели гоночных автомобилей работающих на метаноле имеют степень сжатия превышающую 15:1 в то время как в обычном карбюраторном ДВС степень сжатия для неэтилированного бензина как правило не превышает 11.1:1.

В пятидесятые — шестидесятые годы одной из тенденций двигателестроения, особенно в Северной Америке, было повышение степени сжатия, которая к началу семидесятых на американских двигателях нередко достигала 11-13:1. Однако, это требовало соответствующего бензина с высоким октановым числом, что в те годы могло быть получено лишь добавлением ядовитого тетраэтилсвинца. Введение в начале семидесятых годов экологических стандартов в большинстве стран привело к остановке роста и даже снижению степени сжатия на серийных двигателях.

dic.academic.ru