Схема гидравлического привода сцепления: Sorry! This site is experiencing technical difficulties.

Содержание

Привод сцепления

Привод сцепления

Управление сцеплением в автомобилях с механической коробкой передач производится с помощью педали, но педаль — это лишь один из элементов привода сцепления, а все самое главное скрыто от глаз водителя. О том, что такое привод сцепления, каких он бывает видов, как устроен и как работает, читайте в этой статье.


Назначение и классификация приводов сцепления

Привод сцепления — специальная система, предназначенная для управления сцеплением в автомобилях с механической коробкой передач. С помощью привода усилие от педали передается на вилку выключения сцепления, а через нее — на пружину, что позволяет простым положением педали управлять положением дисков сцепления.

Передать усилие от педали на вилку можно разными способами, и именно на этом строится классификация приводов сцепления. Сегодня выделяют два основных типа привода:

— Механический;

— Гидравлический.

Также существуют комбинированные приводы (электрогидравлический, электромеханический, то есть — с использованием электромоторов), электромагнитный и другие типы приводов, но они не нашли широкого применения в современных автомобилях. Поэтому расскажем только об основных типах привода сцепления.

Схема механического привода выключения сцепления и механизма сцепления:

  1. коленчатый вал
  2. маховик
  3. ведомый диск
  4. нажимной диск
  5. кожух сцепления
  6. нажимные пружины
  7. отжимные рычаги
  8. подшипник выключения сцепления
  9. вилка выключения сцепления
  10. металлический трос
  11. рычаг привода
  12. педаль сцепления
  13. шестерня первичного вала
  14. картер коробки передач
  15. первичный вал коробки передач

Устройство и принцип работы механического привода сцепления

Главная особенность механического привода сцепления в том, что в нем усилие от педали к вилке передается с помощью металлического троса. В состав механического привода входят следующие основные компоненты:

— Педаль сцепления;
— Рычажный привод;
— Трос в гибкой оболочке;
— Вилка выключения сцепления;

— Устройство регулирования свободного хода педали.

Принцип действия механического привода тоже прост: при нажатии на педаль с помощью рычажной передачи трос натягивается и тянет за собой вилку выключения сцепления, которая через муфту и подшипник сжимает пружину — сцепление выключается. Возврат педали производится пружиной. Регулировка свободного хода педали, а также компенсация износа фрикционных накладок на дисках производится с помощью регулировочной гайки, расположенной на конце троса.

Механический привод широко применяется на мотоциклах и легковых автомобилях (где сцепление имеет небольшую массу и требует небольших усилий для управления), он очень прост в производстве и регулировании, надежен и имеет очень низкую стоимость. Однако недостаток механического привода в его трущихся деталях — стальной тросик со временем изнашивается, он может заклинить или оборваться, свободный ход педали увеличивается и т.

д. Но, несмотря на это, механический привод сцепления вряд ли в будущем уступит место более совершенным механизмам.


Устройство и принцип работы гидравлического привода сцепления

В гидравлическом приводе сцепления используется принцип передачи усилия с помощью несжимаемой жидкости. Устройство привода не отличается сложностью:

— Педаль сцепления;
— Главный цилиндр;

— Рабочий цилиндр;
— Магистраль гидропривода;
— Бачок с рабочей жидкостью.

Работа гидравлического привода, как и работа любого другого гидропривода, очень проста: при нажатии на педаль происходит сжатие жидкости в главном цилиндре, жидкость под давлением через магистраль поступает в рабочий цилиндр и толкает поршень, который, в свою очередь, с помощью штока толкает вилку выключения сцепления. Возврат вилки и поршней в первоначальное положение происходит за счет пружин при отпускании педали.

Часто в гидравлических приводах сцепления используется та же жидкость, что и в тормозной системе — обе системы питаются жидкостью из одного бачка.

Гидравлический привод имеет более сложную конструкцию и более высокую стоимость, однако он надежен, не подвержен износу и позволяет управлять сцеплением минимальными усилиями. В грузовых автомобилях гидравлический привод часто дополняется пневматическими или гидравлическими усилителями.


Устройство и принцип работы электронного привода сцепления

В последнее время многие компании предлагают совершенно новые конструкции приводов сцепления, которые находят применение в перспективных автомобилях, в том числе гибридных и электрических. Отдельного внимания заслуживает привод «Electronic Clutch System» от компании Bosch.

Electronic Clutch System (дословно — «Электронная система сцепления») — система, которая позволяет на автомобилях с механической коробкой передач реализовать некоторые функции автоматических коробок. В частности, при движении на первой передаче по городским пробкам управление автомобилем производится только педалями газа и тормоза (сцепление выключается при отпускании акселератора), педаль сцепления становится нужной только при переключении на вторую и более высокие передачи.

Электронный привод сцепления объединяет электронный блок педали сцепления, ряд датчиков (датчик положения рычага переключения скоростей, положения педали газа и другие), электронный блок управления и электрогидравлический привод вилки выключения сцепления. Также электронное сцепление связано с электронной системой управления двигателем, благодаря чему при переключении скоростей происходит автоматическое изменение оборотов двигателя.

Электронное сцепление дает возможность реализовать несколько полезных функций, которые снижают утомляемость водителя и уменьшают расход топлива. Как заявляет производитель, экономия топлива может достичь 10% и более, что при современных ценах на бензин даст ощутимый эффект.

На сегодняшний день система Electronic Clutch System находится на стадии тестирования, поэтому применяется ограниченно, но в будущем она может получить самое широкое распространение.

Другие статьи

#Палец штанги реактивной

Палец штанги реактивной: прочная основа шарниров штанг

23. 06.2021 | Статьи о запасных частях

В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.

#Клапан МАЗ включения привода сцепления

Клапан МАЗ включения привода сцепления

16.06.2021 | Статьи о запасных частях

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

Привод сцепления — механический, гидравлический, как работает

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Схема механического привода сцепления:
1 — контргайка; 2 — регулировочная гайка; 3 — нижний наконечник троса; 4 — защитный чехол троса; 5 — кронштейн крепления троса; 6 — нижний наконечник оболочки троса; 7 — оболочка троса; 8 — поводок троса; 9 — уплотнитель; 10 — верхний наконечник оболочки троса; 11 — верхний наконечник троса; 12 — кронштейн педали сцепления; 13 — пружина педали сцепления; 14 — педаль сцепления; 15 — упорная пластина.

В его конструкции основным элементом является трос, который соединяет между собой «вилку» выключения и педаль сцепления. При нажатии водителем на педаль сцепления через трос, который в свою очередь заключен в специальную оболочку, передается соответствующее усилие на рычажную передачу. В свою очередь рычажная передача обеспечивает выключения сцепления путем перемещения вилки сцепления.

Привод сцепления механический также оснащен механизмом, отвечающим за регулировку свободного хода педали сцепления. Данный механизм включает в себя на конце троса регулировочную гайку. Необходимость данного механизма в первую очередь обусловлена постепенным, вследствие износа, изменением положения педали сцепления.

Гидравлический привод сцепления

Данный привод по своей конструкции напоминает гидравлический привод тормозной системы автомобиля. В нем также в качестве «рабочей» жидкости используется тормозная жидкость, а сам привод состоит из:

  • педали сцепления;
  • главного и рабочего цилиндров;
  • бачка с «рабочей» жидкостью;
  • соединительных трубопроводов.

Схема гидравлического привода сцепления:
1 — маховик; 2 — ведомый диск сцепления; 3 — корзина сцепления; 4 — подшипник выключения сцепления с муфтой; 5 — бачок гидропривода сцепления; 6 — шланг; 7 — главный цилиндр гидропривода выключения сцепления; 8 — сервопружина педали сцепления; 9 — возвратная пружина педали сцепления; 10 — ограничительный винт хода педали сцепления; 11 — педаль сцепления; 12 — трубопровод гидропривода выключения сцепления; 13 — шаровая опора вилки; 14 — вилка выключения сцепления; 15 — оттяжная пружина вилки выключения сцепления; 16 — шланг; 17 — рабочий цилиндр гидропривода выключения сцепления; 18 — штуцер прокачки сцепления.

Главный и рабочий цилиндры выполнены в качестве поршня с толкателем, которые в свою очередь размещены в корпусе. При нажатии водителем на педаль сцепления поршень главного цилиндра начинает двигаться с помощью толкателя вследствие чего «рабочая» жидкость отсекается от бачка. Далее «рабочая» жидкость поступает в рабочий цилиндр по соединенному трубопроводу.

Именно под воздействием «рабочей» жидкости и происходит движение толкателя с поршнем. Толкатель в свою очередь оказывает воздействие на «вилку» сцепления и тем самым обеспечивает выключения сцепления.

Для того чтобы удалить из привода воздух, на рабочем и главном цилиндрах установлены специальные штуцеры.

Работа сцепления с гидравлическим приводом — видео:

Также на некоторых автомобилях применяется вакуумный либо пневматический усилитель привода. Его установка облегчает управление автомобилем.

Загрузка…

3.3.2 Гидравлический привод выключения сцепления с пневмогидроусилителем

Гидропривод обеспечивает более плавное нарастание силы трения между дисками сцепления, а пневмогидроусилитель привода служит для уменьшения усилия на педаль сцепления при выключении.

При нажатии на педаль 1 (рисунок 3.9) при выключении сцепления усилие от ноги водителя через рычаг и шток передается к главному цилиндру 2, откуда жидкость под давлением по трубопроводам 10 поступает в корпус следящего устройства 4, которое при этом обеспечивает пропуск сжатого воздуха, поступающего по воздухопроводу 5 в цилиндр пневмоусилителя 3. Одновременно от главного цилиндра жидкость под давлением поступает в рабочий гидравлический цилиндр 6 усилителя.

а – принципиальная схема соединения элементов привода; б – размещение и крепление элементов привода; 1 – педаль сцепления; 2 – главный цилиндр; 3 – цилиндр пневмоусилителя; 4 – следящее устройство пневмоусилителя; 5 – воздухопровод; 6 – рабочий гидравлический цилиндр; 7 – муфта выключения с подшипником; 8 – рычаг; 9 – шток; 10 – трубопроводы и шланги гидропривода

Рисунок 3. 9 – Схема и привод управления сцеплением автомобилей КамАЗ

Следящее устройство, цилиндр пневмоусилителя и рабочий гидравлический цилиндр выполнены в одном агрегате – пневмогидравлическом усилителе.

Пневмогидравлический усилитель, используемый в сцеплении автомобилей КамАЗ, Урал с двигателями КамАЗ (рисунок 3.10), крепится двумя болтами к фланцу картера сцепления с правой стороны силового агрегата.

Корпус усилителя состоит из двух частей. Передняя (правая на рисунке 3.10) часть корпуса 14 выполнена из алюминиевого сплава, а задняя 5 – из чугуна. Между частями корпуса установлена прокладка, которая одновременно является диафрагмой 9 следящего устройства, размещенного над цилиндром пневматического усилителя.

1 – сферическая гайка с контргайкой; 2 – толкатель поршня выключения сцепления; 3 – защитный чехол; 4 – поршень выключения сцепления; 5 – задняя часть корпуса; 6 – комбинированное уплотнение; 7 – следящий поршень; 8 – перепускной клапан с колпачком; 9 – диафрагма следящего устройства; 10 – впускной клапан; 11 – выпускной клапан; 12 – пневматический поршень; 13 – пробка отверстия для слива конденсата; 14 – передняя часть корпуса; А – отверстие для подвода рабочей жидкости; Б – отверстие для подвода сжатого воздуха

Рисунок 3. 10 – Пневмогидравлический усилитель

Следящее устройство обеспечивает автоматическое изменение давления воздуха на пневматический поршень 12 в зависимости от усилия нажатия на педаль сцепления. К основным частям следящего устройства относятся следящий поршень 7 с уплотнительной манжетой, впускной 10 и выпускной 11 клапаны, диафрагма 9 и пружины.

Когда педаль сцепления отпущена (сцепление включено), пневматический поршень 12 и поршень 4 выключения сцепления находятся в крайнем правом (переднем) положении (пневматический поршень занимает это положение под воздействием возвратной пружины). Давление в полости перед поршнем и за поршнем соответствует атмосферному. Положение поршня 4 выключения сцепления определяется упором его толкателя в днище пневматического поршня. В следящем устройстве при этом выпускной клапан 11 открыт, а впускной 10 закрыт.

При нажатии на педаль сцепления рабочая жидкость поступает под давлением к отверстию А, создавая давление в полости цилиндра выключения сцепления и у торца следящего поршня 7. Под давлением рабочей жидкости следящий поршень воздействует на клапанное устройство таким образом, что выпускной клапан 11 закрывается, а впускной 10 открывается, пропуская сжатый воздух, поступающий по трубопроводам к отверстию Б в корпусе пневмогидравлического усилителя. Под давлением сжатого воздуха пневматический поршень 12 перемещается, воздействуя на шток поршня. В результате на толкатель 2 поршня выключения сцепления 4 действует суммарное усилие, которое передаётся на вилку 10 (рисунок 3.6), вилка перемещает муфту 9. Подшипник муфты через упорное кольцо 11 давит на рычаги выключения 8 и нажимной диск 4 отходит от заднего ведомого диска 3. Одновременно средний ведущий диск 2 с помощью рычажного автоматического механизма, смонтированного на диске, занимает среднее положение. В результате этого передача крутящего момента от двигателя на первичный вал коробки передач или делителя прекращается.

При опускании педали давление перед следящим поршнем 7 падает, в результате в следящем устройстве перекрывается впускной и открывается выпускной клапан. Сжатый воздух из полости за пневматическим поршнем постепенно выходит в атмосферу, воздействие поршня на шток уменьшается и осуществляется плавное включение сцепления.

При отсутствии сжатого воздуха в пневматической системе сохраняется возможность управления сцеплением, так как выключение сцепления может быть осуществлено за счет давления только в гидравлической части усилителя. При этом усилие на педали, создаваемое водителем, должно быть около 600 Н (60 кгс).

Сцепление автомобиля Урал по общему устройству и работе аналогично сцеплению автомобиля КамАЗ, однако имеет некоторые конструктивные особенности.

Картер сцепления передней привалочной поверхностью соединяется с картером маховика, а к задней его части крепится картер коробки передач.

Для обеспечения возможности преодоления автомобилем брода глубиной до 1,5 м полость картера сцепления герметизируется. В нижней его части имеется крышка, в которой предусмотрено дренажное отверстие, перекрываемое пробкой при преодолении брода.

На автомобилях КрАЗ главный гидроцилиндр и пневмогидравлический усилитель имеют несколько иную конструкцию (рисунок 3.11).

При нажатии на педаль 25 давление жидкости, создаваемое поршнем 13, через трубопровод 18 передается к гидропоршню 30 и перемещает его. Впускной воздушный клапан 33, помещённый в гидропоршне 30, перемещается вместе с ним, упирается в хвостовик пневмопоршня 36, перекрывая атмосферное отверстие, и отжимает клапан 33 от седла 34. Сжатый воздух через зазоры между хвостовиком пневмопоршня 36 и седлом 34 поступает в полость пневмопоршня 36, перемещает его и через вилку 44 и рычаг 22 выключает сцепление. В исходное положение педаль 25 возвращается под действием пружины 2, а поршни – под действием нажимных пружин сцепления и возвратных пружин 15, 23 и 35. Сжатый воздух выходит в атмосферу через хвостовик поршня 36 и сапун 19.

В случае отсутствия воздуха в пневмосистеме привод будет чисто гидравлическим, но при этом значительно возрастает усилие на педали.

1 – главный цилиндр; 2 – оттяжная пружина педали; 3 – регулировочные болты; 4 – ось педали; 5 – пробка наливного отверстия; 6 – крышка; 7 – болт; 8 – манжета поршня; 9 – толкатель поршня; 10 – защитный колпак; 11 – контргайка; 12 – вилка толкателя; 13 – поршень главного цилиндра; 14 – манжета главного цилиндра; 15 – пружина возвратная; 16 – картер главного цилиндра; 17 – штуцер; 18 – гидропровод; 19 – сапун; 20 – воздухопровод; 21 – рабочий цилиндр; 22 – рычаг вала вилки выключения сцепления; 23 – возвратная пружина пневмопоршня; 24 – крышка рабочего цилиндра; 25 – педаль сцепления; 26 – защитный колпачок; 27 – клапан перепускной; 28 – шарик-клапан; 29 – кольцо уплотнительное; 30 – гидропоршень рабочего цилиндра; 31 – втулка направляющая впускного клапана; 32 – пружина впускного клапана; 33 – впускной клапан; 34 – седло впускного клапана; 35 – пружина возвратная гидропоршня; 36 – пневмопоршень рабочего цилиндра; 37 – корпус рабочего цилиндра; 38 – стопорное кольцо; 39 – шток пневмопоршня; 40 – шайба; 41 – защитный колпак; 42 – кольцо ограничительное; 43 – гайка крепления защитного колпака; 44 – вилка штока; 45 – маслёнка; 46 – втулка пневмопоршня; 47 – сухарь штока; 48 – опора штока; 49 – палец; а – свободный ход педали сцепления; в – полный ход педали сцепления

Рисунок 3. 11 – Привод выключения сцепления автомобилей КрАЗ

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Устройство и назначение привода выключения сцепления, прокачка гидропривода

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Схема механического привода сцепления: 1 — контргайка; 2 — регулировочная гайка; 3 — нижний наконечник троса; 4 — защитный чехол троса; 5 — кронштейн крепления троса; 6 — нижний наконечник оболочки троса; 7 — оболочка троса; 8 — поводок троса; 9 — уплотнитель; 10 — верхний наконечник оболочки троса; 11 — верхний наконечник троса; 12 — кронштейн педали сцепления; 13 — пружина педали сцепления; 14 — педаль сцепления; 15 — упорная пластина.

В его конструкции основным элементом является трос, который соединяет между собой «вилку» выключения и педаль сцепления. При нажатии водителем на педаль сцепления через трос, который в свою очередь заключен в специальную оболочку, передается соответствующее усилие на рычажную передачу. В свою очередь рычажная передача обеспечивает выключения сцепления путем перемещения вилки сцепления.

Привод сцепления механический также оснащен механизмом, отвечающим за регулировку свободного хода педали сцепления. Данный механизм включает в себя на конце троса регулировочную гайку. Необходимость данного механизма в первую очередь обусловлена постепенным, вследствие износа, изменением положения педали сцепления.

Гидравлический привод сцепления

Данный привод по своей конструкции напоминает гидравлический привод тормозной системы автомобиля. В нем также в качестве «рабочей» жидкости используется тормозная жидкость, а сам привод состоит из:

  • педали сцепления;
  • главного и рабочего цилиндров;
  • бачка с «рабочей» жидкостью;
  • соединительных трубопроводов.

Схема гидравлического привода сцепления: 1 — маховик; 2 — ведомый диск сцепления; 3 — корзина сцепления; 4 — подшипник выключения сцепления с муфтой; 5 — бачок гидропривода сцепления; 6 — шланг; 7 — главный цилиндр гидропривода выключения сцепления; 8 — сервопружина педали сцепления; 9 — возвратная пружина педали сцепления; 10 — ограничительный винт хода педали сцепления; 11 — педаль сцепления; 12 — трубопровод гидропривода выключения сцепления; 13 — шаровая опора вилки; 14 — вилка выключения сцепления; 15 — оттяжная пружина вилки выключения сцепления; 16 — шланг; 17 — рабочий цилиндр гидропривода выключения сцепления; 18 — штуцер прокачки сцепления.

Главный и рабочий цилиндры выполнены в качестве поршня с толкателем, которые в свою очередь размещены в корпусе. При нажатии водителем на педаль сцепления поршень главного цилиндра начинает двигаться с помощью толкателя вследствие чего «рабочая» жидкость отсекается от бачка. Далее «рабочая» жидкость поступает в рабочий цилиндр по соединенному трубопроводу.

Именно под воздействием «рабочей» жидкости и происходит движение толкателя с поршнем. Толкатель в свою очередь оказывает воздействие на «вилку» сцепления и тем самым обеспечивает выключения сцепления.

Для того чтобы удалить из привода воздух, на рабочем и главном цилиндрах установлены специальные штуцеры.

Работа сцепления с гидравлическим приводом — видео:

Также на некоторых автомобилях применяется вакуумный либо пневматический усилитель привода. Его установка облегчает управление автомобилем.

Назначение привода

Здесь все просто. Устройство предназначено для включения и выключения сцепления посредством отжима диафрагменной пружины.

 

Устройство привода выключения сцепления

Штампованная педаль сцепления 21 установлена на сварном кронштейне 12, укрепленном на кузове болтами 11 и шпильками 8 с гайками 7. Педаль сцепления качается на оси 16, которая неподвижно закреплена в кронштейне 12. Педаль фиксируется от проворачивания лыской, входящей в фигурное отверстие в одной из щек кронштейна педали.

Аксиальное перемещение оси ограничено шплинтом 13 и уступом лыски. В ступицу педали вставлены две вращающиеся на оси полиамидные втулки 17, имеющие буртики на одном из торцов.

Втулки имеют высокую износостойкость и не требуют смазки в процессе эксплуатации. На площадку педали надета резиновая накладка 31. Педаль удерживается в исходном (крайнем заднем) положении усилием оттяжной пружины 15. При этом нерегулируемый толкатель 14, шарнирно соединенный с педалью пальцем 19, упирается в ограничительную шайбу 5, зафиксированную в осевом направлении стопорным кольцом.

В исходном положении педали поршень 12 главного цилиндра сцепления под действием пружины 8 упирается торцом в шайбу 14. Между толкателем 14 и поршнем 4 предусмотрен постоянный зазор а = 0,2 — 1,0 мм, который обеспечивается в указанных пределах выбранными размерами этих деталей и ограничительной шайбы 5.

Указанный зазор обеспечивает поршню главного цилиндра возможность занять исходное положение (при включенном сцеплении), гарантирующее сообщение полости а цилиндра с наполнительным бачком 3 через компенсационное отверстие б.

В приводах сцепления и управления ножными тормозами оси педалей, полиамидные втулки, толкатели, накладки педалей и крепежные детали взаимозаменяемы. Главный цилиндр сцепления предназначен для создания давления в системе гидравлического привода сцепления. Цилиндр имеет чугунный корпус 9 внутреннего диаметра 22 мм с фигурным фланцем; во фланец ввернуты две шпильки 18, с помощью которых цилиндр и кронштейн 12 педали крепятся к щиту передней части кузова. Между фланцем корпуса цилиндра и щитом передней части кузова при сборке устанавливают до четырех (по потребности) регулировочных прокладок 6, изготовленных из листовой стали толщиной 0,5 мм каждая. Эти прокладки помогают установить исходное положение педали сцепления, которое должно обеспечивать полный ее ход L до упора в резиновый коврик пола, равный 150—155 мм.

Рис. Привод выключения сцепления: 1 — кронштейн крепления соединительной трубки; 2 — соединительная трубка; 3 — главный цилиндр сцепления в сборе; 4 — поршень главного цилиндра сцепления; 5 — ограничительная шайба; 6 — регулировочная прокладка; 7 и 28 — гайки; 8 — шпилька крепления главного цилиндра; 9 — питательный бачок главного цилиндра сцепления; 10 — гайкодержатель; 11 — болт крепления кронштейна педали сцеплении; 12 — кронштейн педали сцепления: 13 — шплинт оси педали сцепления; 14 — толкатель поршня главного цилиндра сцепления; 15 — оттяжная пружина педали сцепления; 16 — ось педалей сцепления и тормоза; 17 — втулка оси педалей сцепления и тормоза; 18 и 33 — шайбы; 19 и 23 — пальцы; 20 и 32 — шплинты; 21 — педаль сцеплении; 22 — вилка выключения сцепления; 24 — наконечник толкателя; 26 — оттяжная пружина вилки выключения сцепления; 26 — контргайка; 27 — толкатель вилки; 29 — рабочий цилиндр привода включения сцепления; 30 — шпилька крепления рабочего цилиндра; 31 — накладка педали; 34 — защитный колпак; 35 — стопорное кольцо; 36 — поршень рабочего цилиндра; 37 — уплотнительная манжета; 38 — распорный грибок; 39 — пружина; 40 — клапан выпуска воздуха; 41 — защитный колпачок клапана; 42 — скоба крепления трубки; 43 — прокладка

На верху корпуса главного цилиндра расположен бачок 3, изготовленный из полупрозрачной пластмассы. В бачке содержится определенный запас тормозной жидкости, необходимый для нормальной работы гидравлического привода сцепления. Бачок закрыт пластмассовой резьбовой крышкой 1, в которой имеется отверстие для сообщения внутренней полости бачка с атмосферой, и укреплена отражательная пластина, предупреждающая выплескивание тормозной жидкости через указанное отверстие. На торец питательного бачка опирается фланец сетчатого фильтра 2, выполняющего одновременно функции успокоителя находящейся в бачке тормозной жидкости.

Питательный бачок 3 крепится к корпусу 9 главного цилиндра резьбовым штуцером 4, имеющим на торце шлиц под отвертку. Уплотнительная прокладка 5 после затяжки штуцера гарантирует герметичность соединения бачка с корпусом цилиндра. Через отверстие в штуцере 4 тормозная жидкость из бачка 3 самотеком поступает в корпус 9 главного цилиндра.

На находящийся внутри цилиндра поршень 12 надета резиновая уплотнительная манжета 13, препятствующая вытеканию жидкости из цилиндра. Поршень отлит из цинкового сплава. В головке поршня сделано шесть сквозных отверстий г, прикрытых тонким стальным кольцом-клапаном 11 и внутренней рабочей резиновой манжетой 10. На наружной поверхности манжеты имеются одна кольцевая и шесть продольных канавок. Пружина 8 прижимает манжету к поршню 12, а поршень — к упорной шайбе 14. Другим своим концом пружина упирается в резьбовой штуцер 7, закрывающий внутреннюю полость корпуса цилиндра.

Резиновый защитный колпак 16 предохраняет внутреннюю полость цилиндра от попадания пыли. Колпак плотно надет на проточку в корпусе цилиндра и стержень толкателя 17.

Рабочий цилиндр 29 сцепления укреплен с помощью двух шпилек 30 и гаек 28 с левой стороны картера сцепления. Внутренний диаметр рабочего цилиндра равен 22 мм.

Главный и рабочий цилиндры соединены между собой гнутой медной (6×1 мм) или двухслойной стальной трубкой 2 с омедненной внутренней и наружной поверхностями (6×0,7 мм). Спираль, расположенная в средней части трубки, компенсирует изменение расстояния между концами трубки, неизбежное при изменении положения силового агрегата, подвешенного на резиновых подушках, относительно кузова. Кроме закрепления по концам, трубка имеет две промежуточные точки крепления: на левом брызговике кузова с помощью кронштейна 1 и на картере двигателя с помощью скобы 42. Между крепежной деталью и трубкой проложены резиновые прокладки 43. Концы трубки имеют двойную коническую развальцовку, форма и размеры которой показаны на рисунке. До развальцовки концов на трубку надевают соединительные гайки, которыми она присоединяется затем к главному и рабочему цилиндрам.

Рис. Главный цилиндр привода сцепления: 1 — крышка бачка; 2 — сетчатый фильтр; 3 — бачок; 4 — штуцер бачка; 5 — прокладка штуцера бачка; 6 — прокладка штуцера главного цилиндра; 7 — штуцер главного цилиндра; 8 — пружина; 9 — корпус главного цилиндра; 10 — уплотнительная манжета главного цилиндра; 11 — клапан поршня; 12 — поршень; 13 — уплотнительная манжета поршня; 14 — упорная шайба; 15 — стопорное кольцо; 16 — защитный колпак; 17 — толкатель поршня; 18 — шпилька крепления главного цилиндра

Корпус 3 рабочего цилиндра представляет собой отливку из серого чугуна, имеющую с одной стороны открытую цилиндрическую полость, в которую вставлены литой алюминиевый поршень 7 с уплотнительной резиновой манжетой б, распорным грибком 5 и пружиной 4. Пружина постоянно прижимает сферическую поверхность грибка к уплотнительной кромке манжеты и через нее кромку к зеркалу цилиндра, что значительно улучшает уплотнение рабочего цилиндра, особенно при отсутствии давления в системе (сцепление включено).

Рис. Развальцовка концов соединительной трубки (размеры сечения трубок: стальной — 6 X 0,7; медной 6 X 1,0)

Рис. Рабочий цилиндр привода сцепления: 1 — защитный колпачок клапана; 2 — клапан выпуска воздуха; 3 — корпус цилиндра; 4 — пружина; 5 — распорный грибок; 6 — уплотнительная манжета; 7 — поршень; 6 — защитный чехол; 7 — стопорное кольцо

Ввернутый в корпус 3 цилиндра конический клапан 2 служит для удаления воздуха из системы гидропривода. Резиновый колпачок 1 надет на головку клапана и предохраняет внутренний канал клапана от засорения.

В сферическое углубление поршня 36 вставлен толкатель 27, который регулируется по длине. Толкатель регулируют ввертыванием или вывертыванием его из вильчатого наконечника 24. Положение наконечника фиксирует контргайка 26. Пружина 25 вилки 22 выключения сцепления постоянно прижимает толкатель к сферической поверхности поршня и, при отсутствии давления в системе гидропривода сцепления, перемещает поршень в крайнее переднее положение. Поскольку поршень 36 в цилиндре 29 может перемещаться в направлении, соответствующем выключению сцепления (на рисунке вправо), только под действием давления рабочей жидкости, исключается образование разрежения, а следовательно, и проникновение в цилиндр через неплотности поршня воздуха. Поэтому нет необходимости поддерживать в соединительной трубке 2 и перед поршнем 36 избыточное давление, которое обычно обеспечивается установкой в главном цилиндре двойного клапана, как это делается в гидроприводе тормозов (см. ниже). Все детали главного цилиндра сцепления, за исключением корпуса 9 и штуцера 7 взаимозаменяемы с соответствующими деталями главного цилиндра тормоза. Так как в главном цилиндре сцепления отсутствует двойной клапан, корпус и штуцер этого цилиндра отличаются от корпуса и штуцера главного цилиндра тормоза. Чтобы было легче отличить главные цилиндры сцепления и тормоза, их крепежные фланцы повернуты относительно друг друга на 60°. Защитный резиновый чехол 8 предохраняет внутреннюю полость рабочего цилиндра от грязи.

Привод сцепления и его виды

Устройство сцепления

Привод предназначен для дистанционного управления сцеплением непосредственно водителем из салона. Нажатие на педаль сцепления напрямую воздействует на нажимной диск.

Известны следующие виды привода:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наибольшее распространение получили первые два вида. На грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлический устанавливают в машинах с роботизированной коробкой передач.

Прокачка сцепления

Если вкратце ознакомится с алгоритмом прокачки сцепления, то он происходит следующим образом:

  1. Подготовка системы к работе.
  2. Подключение к штуцеру резинового шланга.
  3. Нажатие на сцепление и слив жидкости до полного выхода воздуха.

Для прокачки гидропривода сцепления вам будут необходимы такие инструменты:

  1. Инструмент для фиксации педали сцепления.
  2. Канистра для слива тормозной жидкости.
  3. Резиновый шланг, который мы будем подключать к сливному штуцеру.
  4. Новая тормозная жидкость.
  5. Стандартный набор инструментов.

Перед прокачкой сцепления следует его отрегулировать, так как невозможно эффективно прокачать систему сцепления, если толкатель поршня не перемещается свободно. В этой ситуации воздух не выйдет.

замена жидкости сцепления

Для начала в бачок цилиндра следует долить жидкости. Ее уровень не должен быть ниже двух сантиметров от наивысшего края. При этом нужно постараться, что бы в систему не попал мусор, разные посторонние примеси и так далее.

Снимаем с перепускного клапана резиновый колпачок в верхнем отделе корпуса, после чего надеваем шланг. Через него из системы будет проходить тормозная жидкость. В емкость наливается около двести миллилитров тормозной жидкости.

штуцер прокачки сцепления

Открываем пропускной клапан и нажимаем несколько раз на педаль сцепления.

Следите за пузырьками воздуха, именно сейчас и происходит очистка всей системы. Кроме того, следите, что бы уровень тормозной жидкости не опустился ниже трех сантиметров от края. После того, как педаль максимально опустится, необходимо до конца закрутить перепускной клапан. Процесс производится несколько раз.

Теперь снимаем со штуцера резиновый шланг и надеваем предохранительный колпачок. Далее доливаем в бачок жидкость.

Работа главного цилиндра сцепления

Главный цилиндр сцепления работает следующим образом. При нажатии на педаль 21 толкатель 14 перемещает поршень 4, сжимая пружину 8.

Как только манжета 10 перекроет перепускное отверстие б, внутри цилиндра в полости а создается давление, и жидкость через отверстие в штуцере 7 и по соединительной трубке 2 проходит в рабочий цилиндр 29, вызывая перемещение поршня 36, толкателя 27 и связанной с ним через наконечник 24 и палец 23 вилки 22 выключения сцепления. Сцепление выключается. При том растягивается оттяжная пружина 25 вилки и сжимаются нажимные пружины 14.

При отпускании педали сцепления последняя возвращается в исходное положение пружиной 75, а поршень 12 главного цилиндра под действием возвратной пружины 8 перемещается вслед за толкателем 17 до упора в шайбу 14. При этом давление в системе падает, и нажимной диск сцепления, переменяясь под действием нажимных пружин, вновь прижимает ведомый диск к маховику. Сцепление включается. Перемещение нажимного диска до его упора в ведомый диск вызывает перемещение связанной с ним через отжимные рычажки пяты и упертого в нее подпятника.

Далее подпятник и связанная с ним вилка выключения сцепления перемещаются под действием оттяжной пружины 25, которая постоянно прижимает шток толкателя 27 к поршню 36 и передвигает последний в крайнее переднее положение. При этом поршень вытесняет жидкость из внутренней полости рабочего цилиндра 29. Жидкость по трубке 2 возвращается в полость а главного цилиндра.

При резком отпускании педали сцепления жидкость, возвращающаяся из рабочего цилиндра в главный, не успевает заполнить пространство, освобождаемое поршнем 12, и в полости а создается разрежение.

Под действием этого разрежения жидкость из полости д (куда она поступает через отверстие в) перетекает в полость а через отверстия г в головке поршня, отодвигая клапан 11 и края манжеты 10. Канавки на поверхности манжеты 10 облегчают проход жидкости из полости д в полость а. В дальнейшем избыточная жидкость но мере поступления ее из трубопровода вытесняется из полости а через компенсационное отверстие б в бачок 3. Перетекание жидкости из соединительной трубки в главный цилиндр сцепления прекращается, как только поршень рабочего цилиндра под действием нажимных пружин и оттяжной пружины вилки выключения сцепления возвратится в крайнее переднее положение.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Устройство гидравлического привода

При таком конструктивном решении усилие передаётся уже другим способом. Схема гидравлического привода не предполагает наличие троса, реализация механизма с данным типом управления немного сложнее и трос заменяет гидравлическая магистраль. Усилие передаётся посредством несжимаемой жидкости, проходящей по магистрали и поскольку гидропривод аналогичен тому, что применяется в тормозной системе, для работы используют ту же жидкость. Устройство сцепления с управлением с помощью гидравлического привода включает следующие элементы:

  • Педаль.
  • Главный цилиндр, состоящий из поршня с толкателем, резервуара для жидкости и уплотнительных манжет.
  • Рабочий цилиндр имеет похожую конструкцию.
  • Магистраль, соединяющая цилиндры.
  • Бачок с жидкостью.
  • Дополнительно цилиндры оснащаются клапанами для отвода воздуха из системы.

Принцип работы достаточно простой и схож с механическим вариантом управления, отличие только в методе передачи усилия. Когда автомобилист жмёт на ножной рычаг в салоне автомашины, поршень главного цилиндра приводится в движение, жидкость сжимается и под давлением перемещается по трубопроводу в рабочий цилиндр, толкая поршень, что задействует вилку выключения сцепления.

Гидравлический привод может быть также оборудован демпфирующим устройством с целью гашения колебаний от взаимодействия выжимного подшипника с деталями выключения сцепления. Пневматические или гидравлические усилители часто используются для грузового транспорта.

Поскольку механизм с гидравлическим приводом является более совершенным и сложным устройством, передающим усилие на дальнее расстояние с высоким КПД, стоимость его выше, при этом он отличается плавностью включения сцепления, что обусловлено сопротивлением перемещению жидкости в элементах конструкции. Среди преимуществ гидропривода также устойчивость к износу деталей, но и ремонт сложнее, чем в случае с механическим устройством.

Механический и гидравлический приводы наделены своими особенностями функционирования, плюсами и минусами применения, при этом устройства этих типов обеспечивают комфорт управления транспортным средством. В легковых машинах жёсткость диафрагменной пружины нажимного диска небольшая, так что водителю не нужно прилагать больших усилий, но на грузовиках узел габаритнее, и чтобы привести в действие корзину, от водителя потребуется большее усилие, поэтому в конструкцию вводят усилители.

По окончанию процедуры, педаль сцепления должна работать нормально, с поршнями также не должно быть проблем. Это крайне важно, так как в некоторых случаях может произойти разбухание разнообразных резиновых элементов, что очень опасно, потому что приводит к отказу всей системы.

Какой привод сцепления лучше

Одним из важнейших механизмов автомобиля является сцепление. Данная система реализована для краткосрочного разъединения коленчатого вала мотора от коробки и их мягкого соединения при переводе ручки селектора передач на механике, передачи крутящего момента и гашения нагрузок и крутильных колебаний трансмиссии.

В моделях, оборудованных механической трансмиссией, чтобы двинуться с места, следует выжать педаль сцепления, включить передачу и, плавно отпускать педаль, избегая резких движений. Кроме знакомого всем элемента управления – педали, посредством которой водитель напрямую взаимодействует с механизмом, в конструкции имеются не менее важные компоненты. Ножной рычаг является лишь видимой частью привода сцепления, позволяющий непосредственно контактировать с механизмом путём нажатия, остальные же элементы скрыты, их слаженная работа и обеспечивает функционирование узла.

Управление сцеплением в автомобилях с МКПП обусловлено приводом. С его помощью и передаётся усилие от педали на вилку выключения сцепления и далее на пружину, благодаря чему становится возможным управлять позицией дисков из салона.

Разновидности привода сцепления

Зависимо от реализации передачи усилия различают несколько видов приводов, используемых соответственно типу сцепления, компоновке авто и принятым при конструировании техническим решениям по обеспечению управления.

На сегодняшний день основными типами привода являются:

  • Механический.
  • Гидравлический.

Есть ещё электрический привод, имеющий в составе электромотор, и комбинированные варианты, но они не получили массового распространения в современном автомобилестроении, потому далее речь пойдёт именно об основных разновидностях.

При условии отсутствия усилителя, усилие на ножной рычаг не должно быть более 150 Н для легкового транспорта и 250 Н для грузовиков, полный ход педали находиться в границах 120-190 мм, при этом общее передаточное число привода имеет значение 25-50. Если же управление сцеплением требует усилий больше допустимого, для упрощения задачи в конструкции используют пневматические и вакуумные усилители.

Легковой автомобиль чаще всего оснащается механизмом с гидравлическим типом привода, нередко с серво пружиной, или механическим тросовым приводом. Для малотоннажных грузовиков или транспорта средней грузоподъёмности также применяют механический и гидравлический типы приводов, а для крупнотоннажного транспорта (автомобили-тягачи, часто используемые для формирования автопоездов) устанавливается комбинированный – механический с пневмоусилителем или гидравлический с пневмоусилителем.

Устройство механического привода

Сцепление на автотранспорте, где применена механика, не является сложным узлом. В качестве системы управления на легковушках и мотоциклах, где не требуется больших усилий, нередко применяется механический тросовый привод. Он отличается нехитрой конструкцией, надёжностью, лёгкостью обслуживания и низкой ценой, при этом в результате старения со временем фрикционных накладок изменяется положение педали (для решения этой проблемы конструкция предусматривает функцию ручной или автоматической регулировки). Механический тросовый привод сцепления имеет меньший КПД, если сравнивать с гидравлическим типом. Это обусловлено потерями энергии в результате трения составляющих компонентов.

Основные детали механического привода:

  • Педаль.
  • Трос в оболочке.
  • Рычажная передача.
  • Вилка выключения сцепления.
  • Механизм контроля свободного хода.

Трос, заключённый в гибкий кожух, объединяет вилку выключения и педаль. Так, при нажиме на педаль через него передаётся усилие на рычажную передачу, она в то же время выключает сцепление передвижением вилки, воздействующей на муфту.

В соединении троса и вилки конструкция предусматривает также механизм, используемый для регулировки свободного хода педали путём изменения длины тяги. Гайка находится на конце троса. Вопрос регулировки хода педали возникает при смене её позиции, что сопровождается такими симптомами, как шум и рывки в начале движения автомобиля. Зазор в сцеплении должен быть в пределах 3-4 мм. (35-50 мм. свободного хода), эти показатели указываются автопроизводителем в мануале авто. Зазор меньше нормы или его отсутствие ведёт к неполному включению сцепления и в результате пробуксовке, больший зазор – к увеличению хода педали и неполному выключению сцепления.

В грузовиках реализован рычажный привод, передающий усилие на дальнем расстоянии. Так, при нажиме на педаль, закреплённую на валу, поворачивается рычаг, соединённый с другим концом вала. Рычаг задействует прикреплённую к нему на оси тягу, связанную с вилкой и поворачивающую её, а вместе с тем и прижатую к вилке пружиной муфту.

Устройство гидравлического привода

При таком конструктивном решении усилие передаётся уже другим способом. Схема гидравлического привода не предполагает наличие троса, реализация механизма с данным типом управления немного сложнее и трос заменяет гидравлическая магистраль. Усилие передаётся посредством несжимаемой жидкости, проходящей по магистрали и поскольку гидропривод аналогичен тому, что применяется в тормозной системе, для работы используют ту же жидкость. Устройство сцепления с управлением с помощью гидравлического привода включает следующие элементы:

  • Педаль.
  • Главный цилиндр, состоящий из поршня с толкателем, резервуара для жидкости и уплотнительных манжет.
  • Рабочий цилиндр имеет похожую конструкцию.
  • Магистраль, соединяющая цилиндры.
  • Бачок с жидкостью.
  • Дополнительно цилиндры оснащаются клапанами для отвода воздуха из системы.

Принцип работы достаточно простой и схож с механическим вариантом управления, отличие только в методе передачи усилия. Когда автомобилист жмёт на ножной рычаг в салоне автомашины, поршень главного цилиндра приводится в движение, жидкость сжимается и под давлением перемещается по трубопроводу в рабочий цилиндр, толкая поршень, что задействует вилку выключения сцепления.

Гидравлический привод может быть также оборудован демпфирующим устройством с целью гашения колебаний от взаимодействия выжимного подшипника с деталями выключения сцепления. Пневматические или гидравлические усилители часто используются для грузового транспорта.

Поскольку механизм с гидравлическим приводом является более совершенным и сложным устройством, передающим усилие на дальнее расстояние с высоким КПД, стоимость его выше, при этом он отличается плавностью включения сцепления, что обусловлено сопротивлением перемещению жидкости в элементах конструкции. Среди преимуществ гидропривода также устойчивость к износу деталей, но и ремонт сложнее, чем в случае с механическим устройством.

Заключение

Механический и гидравлический приводы наделены своими особенностями функционирования, плюсами и минусами применения, при этом устройства этих типов обеспечивают комфорт управления транспортным средством. В легковых машинах жёсткость диафрагменной пружины нажимного диска небольшая, так что водителю не нужно прилагать больших усилий, но на грузовиках узел габаритнее, и чтобы привести в действие корзину, от водителя потребуется большее усилие, поэтому в конструкцию вводят усилители.

✅ Как работает гидравлическое сцепление


Какие бывают виды приводов сцепления и их принцип работы

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Прокачка сцепления

Если вкратце ознакомится с алгоритмом прокачки сцепления, то он происходит следующим образом:

Для прокачки гидропривода сцепления вам будут необходимы такие инструменты:

Перед прокачкой сцепления следует его отрегулировать, так как невозможно эффективно прокачать систему сцепления, если толкатель поршня не перемещается свободно. В этой ситуации воздух не выйдет.

замена жидкости сцепления

Для начала в бачок цилиндра следует долить жидкости. Ее уровень не должен быть ниже двух сантиметров от наивысшего края. При этом нужно постараться, что бы в систему не попал мусор, разные посторонние примеси и так далее.

Снимаем с перепускного клапана резиновый колпачок в верхнем отделе корпуса, после чего надеваем шланг. Через него из системы будет проходить тормозная жидкость. В емкость наливается около двести миллилитров тормозной жидкости.

штуцер прокачки сцепления

Открываем пропускной клапан и нажимаем несколько раз на педаль сцепления.

Следите за пузырьками воздуха, именно сейчас и происходит очистка всей системы. Кроме того, следите, что бы уровень тормозной жидкости не опустился ниже трех сантиметров от края. После того, как педаль максимально опустится, необходимо до конца закрутить перепускной клапан. Процесс производится несколько раз.

Теперь снимаем со штуцера резиновый шланг и надеваем предохранительный колпачок. Далее доливаем в бачок жидкость.

Привод сцепления и его виды

Привод предназначен для дистанционного управления сцеплением непосредственно водителем из салона. Нажатие на педаль сцепления напрямую воздействует на нажимной диск.

Известны следующие виды привода:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наибольшее распространение получили первые два вида. На грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлический устанавливают в машинах с роботизированной коробкой передач.

В некоторых автомобилях для облегчения управления применяется пневматический или вакуумный усилитель привода.

Механический привод

Механический или тросовый привод отличается простой конструкцией и невысокой ценой. Он неприхотлив в обслуживании и состоит из минимального количества элементов. Механический привод устанавливается в легковых и малотоннажных грузовых автомобилях.

Механический привод сцепления

К элементам механического привода относятся:

  • трос сцепления;
  • педаль сцепления;
  • вилка выключения сцепления;
  • выжимной подшипник;
  • механизм регулировки.

Трос сцепления, заключенный в оболочку, является основным элементом привода. Трос сцепления крепится к вилке, а также к педали, находящейся в салоне автомобиля. В момент выжимания педали водителем действие через трос передается на вилку и выжимной подшипник. В результате происходит разъединение маховика двигателя с трансмиссией и, соответственно, выключение сцепления.

В соединении троса и рычажного привода предусмотрен регулировочный механизм, обеспечивающий свободный ход педали сцепления.

Ход педали сцепления представляет собой свободное перемещение до момента срабатывания привода. Расстояние, пройденное педалью без особого усилия водителя при нажатии, и есть свободный ход.

Если переключение передач сопровождается шумом, а в начале движения наблюдаются небольшие рывки автомобиля, то необходима регулировка хода педали.

Зазор в сцеплении должен находиться в пределах 35-50 мм свободного хода педали. Нормативы этих показателей указаны в технической документации автомобиля. Регулировка хода педали осуществляется путем изменения длины тяги с помощью регулировочной гайки.

В грузовых автомобилях используется не тросовый, а рычажный механический привод.

К плюсам механического привода относятся:

  • простота устройства;
  • невысокая стоимость;
  • надежность в эксплуатации.

Главным минусом считается более низкий КПД по сравнению с гидроприводом.

Гидравлический привод сцепления

Гидропривод имеет более сложную конструкцию. К его элементам, помимо выжимного подшипника, вилки и педали, относится также гидравлическая магистраль, которая заменяет трос сцепления.


Схема гидравлического сцепления

По сути эта магистраль аналогична гидроприводу тормозной системы и состоит из следующих элементов:

  • главный цилиндр сцепления;
  • рабочий цилиндр сцепления;
  • бачок и трубопровод с тормозной жидкостью.

Устройство главного цилиндра сцепления напоминает устройство главного тормозного цилиндра. Главный цилиндр сцепления состоит из поршня с толкателем, расположенных одном в корпусе. Также к его элементам относятся резервуар для жидкости и уплотнительные манжеты.

Рабочий цилиндр сцепления, имеющий схожую с главным цилиндром конструкцию, дополнительно оснащен клапаном для удаления воздуха из системы.

Механизм действия гидропривода такой же, как и у механического, только усилие передается с помощью находящейся в трубопроводе жидкости, а не через трос.

Во время нажатия водителем на педаль усилие через шток передается на главный цилиндр сцепления. Затем за счет несжимаемого свойства жидкости в действие приводятся рабочий цилиндр сцепления и рычаг привода выжимного подшипника.

В качестве плюсов гидропривода можно выделить следующие его особенности:

  • гидравлическое сцепление позволяет передавать усилие на значительное расстояние с высоким КПД;
  • сопротивление перетеканию жидкости в элементах гидропривода способствует плавному включению сцепления.

Главный минус гидропривода – более сложный ремонт по сравнению с механическим. Течь рабочей жидкости и попадание в систему гидропривода воздуха — вот, пожалуй, наиболее распространенные поломки, которыми могут «похвастаться» главный и рабочий цилиндры сцепления.

Гидравлическое сцепление

Второй, достаточно распространенный вид сцепления – гидравлический. Он нашел применение на авто с автоматическими КПП и вариатором.

Если в фрикционном типе усилие на трансмиссию передается за счет сил трения, то в гидравлическом это делается благодаря создаваемому потоку жидкости.

Такое сцепление состоит из двух лопастных колес – ведущего (насосного) и ведомого (турбинного), помещенных в корпус, заполненный рабочей жидкостью.

Между ними дополнительно установлен реактор – еще одно колесо, обеспечивающее перенаправление жидкости.

Суть работы очень проста: ведущее колесо связано с маховиком и вращается вместе с ним. При этом за счет лопастей создается поток жидкости, который попадает на лопасти турбинного колеса (связанного с валом КПП), что и приводит к его вращению.

Реактор, используемый в конструкции, увеличивает скорость движения потока, тем самым повышая крутящий момент на ведомом колесе.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Характеристики керамического и металлокерамического сцепления

В последнее время любители экстремальной быстрой езды открыли для себя керамическое и металлокерамическое сцепление. Керамика значительно выигрывает, если ее установить на мощный агрегат, который любит стартовать с пробуксовкой и сжигать резину. Металлокерамическое сцепление может выдерживать значительные нагрузки и является лучшим выбором гонщиков.

Диски производят с добавление углеродистого волокна, кевлара и керамики. Такой состав позволяет на 10–15% поднять передачу крутящего момента без увеличения прижимной силы, оказываемой на корзину. Живут такие диски, как правило, в четыре раза дольше обычных. Производят 3-х, 4-х, 6-и лепестковые модели, которые отлично справляются с температурными и механическими нагрузками. Некоторые водители жалуются на слишком резкое переключение передач при керамическом сцеплении, но определенного мнения на этот счет среди автомобилистов пока нет.

Привод выключения сцепления гидравлический

На автомобиле применяется гидравлический привод выключения сцепления с педалью подвесной конструкции (ось качания педали расположена выше ее площадки). Такой тип привода получает все большее распространение на современных легковых автомобилях. Его преимущества по сравнению с механическим приводом сводятся в основном к следующему:

  1. Сцепление включается более плавно, что уменьшает динамические нагрузки в трансмиссии, особенно при трогании автомобиля с места, и повышает комфортабельность езды.
  2. Значительно улучшается герметизация пассажирского помещения кузова от проникновения в него пыли, грязи и влаги, поскольку (при педали тормоза также «подвесной» конструкции) в наклонном полу кузова отсутствуют люки для прохода рычагов педалей сцепления и тормоза.
  3. Не забрасываются грязью и хорошо защищены от пыли главные цилиндры гидроприводов выключения сцепления и ножного тормоза, расположенные достаточно высоко па идете кузова, и элементы механической части приводов, что облегчает техническое обслуживание этих узлов и повышает их долговечность.
  4. Нет точек смазки в приводе сцепления, что упрощает обслуживание автомобиля.
  5. Появляются значительные компоновочные возможности, так как «подвесные» педали сцепления и тормоза вместе с их главными цилиндрами можно разместить на щите передка кузова в соответствии с особенностями компоновки автомобиля.

Гидравлический привод

Гидравлический привод сцепления обладает более сложной структурой. Несмотря на сложную систему, устройство в работе является более совершенным. Главный и рабочий цилиндр сцепления автомобиля имеют одинаковый принцип дефектовки деталей, поэтому они описываются по отдельности редко.

Особенности

Гидропривод сцепления для автомобиля имеет несколько конструктивных особенностей:

Главный и рабочий цилиндр имеют соединение с помощью магистрали, где расположена рабочая жидкость. Принцип работы имеет сходство с действием гидравлической системы тормозов, которое базируется традиционно на особенностях свойств несжимаемой жидкости.

Поломки

Рабочий цилиндр автомобиля подвергается поломкам, поэтому тем, кто хочет сэкономить время на ремонте, стоит осуществить его замену новым элементом. Цилиндр продается, как и шайбы для уплотнения, в комплекте. Устанавливаются компоненты под гидравлический шланг, в области болта крепления. Если их нет в наборе, стоит приобрести отдельно и установить на автомобиль.

Полностью заменять цилиндр автомобиля нецелесообразно с экономической точки зрения, достаточно поменять специальные резиновые манжеты, которые продаются в ремонтных комплектах. Отдавать машину стоит в ремонт только в проверенные сервисы, чтобы достигнуть оптимального результата.

Как работает

От педали сцепления к его механизму передается усилие с помощью жидкости, находящейся в гидроцилиндрах привода, соединяющих важнейшие элементы. Большой диск находится на острой стороне вала и кожуха, выполненного из стали. Последний закрепляется в области маховика. Внутри него есть пружина со специальными выжимными рычажками. На оси конструкции располагается специальная управляющая педаль, которая приподнимается к кронштейну на кузове. Она опускается при выключении сцепления и переключении передачи.

Устройство привода выключения сцепления

Штампованная педаль сцепления 21 установлена на сварном кронштейне 12, укрепленном на кузове болтами 11 и шпильками 8 с гайками 7. Педаль сцепления качается на оси 16, которая неподвижно закреплена в кронштейне 12. Педаль фиксируется от проворачивания лыской, входящей в фигурное отверстие в одной из щек кронштейна педали.

Аксиальное перемещение оси ограничено шплинтом 13 и уступом лыски. В ступицу педали вставлены две вращающиеся на оси полиамидные втулки 17, имеющие буртики на одном из торцов.

Втулки имеют высокую износостойкость и не требуют смазки в процессе эксплуатации. На площадку педали надета резиновая накладка 31. Педаль удерживается в исходном (крайнем заднем) положении усилием оттяжной пружины 15. При этом нерегулируемый толкатель 14, шарнирно соединенный с педалью пальцем 19, упирается в ограничительную шайбу 5, зафиксированную в осевом направлении стопорным кольцом.

В исходном положении педали поршень 12 главного цилиндра сцепления под действием пружины 8 упирается торцом в шайбу 14. Между толкателем 14 и поршнем 4 предусмотрен постоянный зазор а = 0,2 — 1,0 мм, который обеспечивается в указанных пределах выбранными размерами этих деталей и ограничительной шайбы 5.

Указанный зазор обеспечивает поршню главного цилиндра возможность занять исходное положение (при включенном сцеплении), гарантирующее сообщение полости а цилиндра с наполнительным бачком 3 через компенсационное отверстие б.

В приводах сцепления и управления ножными тормозами оси педалей, полиамидные втулки, толкатели, накладки педалей и крепежные детали взаимозаменяемы. Главный цилиндр сцепления предназначен для создания давления в системе гидравлического привода сцепления. Цилиндр имеет чугунный корпус 9 внутреннего диаметра 22 мм с фигурным фланцем; во фланец ввернуты две шпильки 18, с помощью которых цилиндр и кронштейн 12 педали крепятся к щиту передней части кузова. Между фланцем корпуса цилиндра и щитом передней части кузова при сборке устанавливают до четырех (по потребности) регулировочных прокладок 6, изготовленных из листовой стали толщиной 0,5 мм каждая. Эти прокладки помогают установить исходное положение педали сцепления, которое должно обеспечивать полный ее ход L до упора в резиновый коврик пола, равный 150—155 мм.

Рис. Привод выключения сцепления: 1 — кронштейн крепления соединительной трубки; 2 — соединительная трубка; 3 — главный цилиндр сцепления в сборе; 4 — поршень главного цилиндра сцепления; 5 — ограничительная шайба; 6 — регулировочная прокладка; 7 и 28 — гайки; 8 — шпилька крепления главного цилиндра; 9 — питательный бачок главного цилиндра сцепления; 10 — гайкодержатель; 11 — болт крепления кронштейна педали сцеплении; 12 — кронштейн педали сцепления: 13 — шплинт оси педали сцепления; 14 — толкатель поршня главного цилиндра сцепления; 15 — оттяжная пружина педали сцепления; 16 — ось педалей сцепления и тормоза; 17 — втулка оси педалей сцепления и тормоза; 18 и 33 — шайбы; 19 и 23 — пальцы; 20 и 32 — шплинты; 21 — педаль сцеплении; 22 — вилка выключения сцепления; 24 — наконечник толкателя; 26 — оттяжная пружина вилки выключения сцепления; 26 — контргайка; 27 — толкатель вилки; 29 — рабочий цилиндр привода включения сцепления; 30 — шпилька крепления рабочего цилиндра; 31 — накладка педали; 34 — защитный колпак; 35 — стопорное кольцо; 36 — поршень рабочего цилиндра; 37 — уплотнительная манжета; 38 — распорный грибок; 39 — пружина; 40 — клапан выпуска воздуха; 41 — защитный колпачок клапана; 42 — скоба крепления трубки; 43 — прокладка

На верху корпуса главного цилиндра расположен бачок 3, изготовленный из полупрозрачной пластмассы. В бачке содержится определенный запас тормозной жидкости, необходимый для нормальной работы гидравлического привода сцепления. Бачок закрыт пластмассовой резьбовой крышкой 1, в которой имеется отверстие для сообщения внутренней полости бачка с атмосферой, и укреплена отражательная пластина, предупреждающая выплескивание тормозной жидкости через указанное отверстие. На торец питательного бачка опирается фланец сетчатого фильтра 2, выполняющего одновременно функции успокоителя находящейся в бачке тормозной жидкости.

Питательный бачок 3 крепится к корпусу 9 главного цилиндра резьбовым штуцером 4, имеющим на торце шлиц под отвертку. Уплотнительная прокладка 5 после затяжки штуцера гарантирует герметичность соединения бачка с корпусом цилиндра. Через отверстие в штуцере 4 тормозная жидкость из бачка 3 самотеком поступает в корпус 9 главного цилиндра.

На находящийся внутри цилиндра поршень 12 надета резиновая уплотнительная манжета 13, препятствующая вытеканию жидкости из цилиндра. Поршень отлит из цинкового сплава. В головке поршня сделано шесть сквозных отверстий г, прикрытых тонким стальным кольцом-клапаном 11 и внутренней рабочей резиновой манжетой 10. На наружной поверхности манжеты имеются одна кольцевая и шесть продольных канавок. Пружина 8 прижимает манжету к поршню 12, а поршень — к упорной шайбе 14. Другим своим концом пружина упирается в резьбовой штуцер 7, закрывающий внутреннюю полость корпуса цилиндра.

Работа главного цилиндра сцепления

Главный цилиндр сцепления работает следующим образом. При нажатии на педаль 21 толкатель 14 перемещает поршень 4, сжимая пружину 8.

Как только манжета 10 перекроет перепускное отверстие б, внутри цилиндра в полости а создается давление, и жидкость через отверстие в штуцере 7 и по соединительной трубке 2 проходит в рабочий цилиндр 29, вызывая перемещение поршня 36, толкателя 27 и связанной с ним через наконечник 24 и палец 23 вилки 22 выключения сцепления. Сцепление выключается. При том растягивается оттяжная пружина 25 вилки и сжимаются нажимные пружины 14.

Рекомендуем: Адаптивная регулируемая подвеска: в чём секрет управляемости дорогих авто?

При отпускании педали сцепления последняя возвращается в исходное положение пружиной 75, а поршень 12 главного цилиндра под действием возвратной пружины 8 перемещается вслед за толкателем 17 до упора в шайбу 14. При этом давление в системе падает, и нажимной диск сцепления, переменяясь под действием нажимных пружин, вновь прижимает ведомый диск к маховику. Сцепление включается. Перемещение нажимного диска до его упора в ведомый диск вызывает перемещение связанной с ним через отжимные рычажки пяты и упертого в нее подпятника.

Далее подпятник и связанная с ним вилка выключения сцепления перемещаются под действием оттяжной пружины 25, которая постоянно прижимает шток толкателя 27 к поршню 36 и передвигает последний в крайнее переднее положение. При этом поршень вытесняет жидкость из внутренней полости рабочего цилиндра 29. Жидкость по трубке 2 возвращается в полость а главного цилиндра.

При резком отпускании педали сцепления жидкость, возвращающаяся из рабочего цилиндра в главный, не успевает заполнить пространство, освобождаемое поршнем 12, и в полости а создается разрежение.

Под действием этого разрежения жидкость из полости д (куда она поступает через отверстие в) перетекает в полость а через отверстия г в головке поршня, отодвигая клапан 11 и края манжеты 10. Канавки на поверхности манжеты 10 облегчают проход жидкости из полости д в полость а. В дальнейшем избыточная жидкость но мере поступления ее из трубопровода вытесняется из полости а через компенсационное отверстие б в бачок 3. Перетекание жидкости из соединительной трубки в главный цилиндр сцепления прекращается, как только поршень рабочего цилиндра под действием нажимных пружин и оттяжной пружины вилки выключения сцепления возвратится в крайнее переднее положение.

Гидравлический привод — сцепление — Большая Энциклопедия Нефти и Газа, статья, страница 1

Гидравлический привод — сцепление

Cтраница 1

Гидравлический привод сцепления применяется обычно на легковых и некоторых грузовых автомобилях. При нажатии на педаль сцепления поршень 4 главного цилиндра перемещается справа налево и вытесняет жидкость в трубопровод и рабочий цилиндр. Поршень 3 рабочего цилиндра через шток 6 поворачивает вилку 7 выключения сцепления.  [1]

Гидравлический привод сцепления ( рис. 124) состоит из педали 4 сцепления, главного цилиндра 5, пневмоги-дроусилителя 21, системы трубопроводов и шлангов.  [2]

Систему гидравлического привода сцепления заполняют жидкостью для гидравлических тормозов.  [3]

В гидравлическом приводе сцепления используют спир-то-касторовые тормозные жидкости БСК ( на бутиловом спирте), ЗСК ( на этиловом спирте) или смесь 50 % касторового масла и 50 % бутилового спирта.  [4]

В гидравлическом приводе сцепления сферические наконечники толкателя поршня главного цилиндра и толкателя вилки выключения, а также сферические выемки в поршнях и наконечнике вилки должны быть гладкими, без рисок.  [5]

В гидравлическом приводе сцепления используют спирто-касторовые тормозные жидкости БСК ( на бутиловом спирте), ЭСК ( на этиловом спирте) или смесь 50 % касторового масла и 50 % бутилового спирта.  [7]

При гидравлическом приводе сцепления связь педали сцепления с вилкой муфты выключения осуществляется гидравлическими аппаратами: главным и рабочим цилиндрами, соединенными трубопроводом.  [8]

Заполнение системы гидравлического привода сцепления выполняется аналогичным образом, но перед тем как отвернуть перепускной клапан рабочего цилиндра, требуется создать в системе давление. Для этого резко нажимают на педаль сцепления 4 — 5 раз с интервалом 1 — 2 сек. При отвертывании перепускного клапана рабочего цилиндра педаль должна оставаться нажатой. После прокачки при завертывании перепускного клапана педаль также должна быть нажатой.  [9]

Главный цилиндр гидравлического привода сцепления соединен трубопроводом с бачком главного тормозного цилиндра, из которого к нему поступает тормозная жидкость.  [10]

Педаль 1 гидравлического привода сцепления ( рис. 77) установлена на оси 2 на двух игольчатых подшипниках н действует на шток главного цилиндра 3, откуда жидкость по трубопроводу 4 подается к рабочему цилиндру 5, расположенному на картере коробки передач и действующему через шток 6 на рычаг 7 привода вилки выключения сцепления.  [11]

Удаление воздуха из гидравлического привода сцепления осуществляется через клапан, расположенный на рабочем цилиндре сцепления, аналогично прокачке тормозов.  [12]

На автомобилях ГАЗ-66 устанавливается гидравлический привод сцепления.  [14]

Страницы:      1    2    3

Как работает гидравлическая система сцепления

Если трансмиссия вашего автомобиля оснащена гидравлическим сцеплением, скорее всего, вам интересно, как именно оно работает в вашей системе переключения. Большинство сцеплений, особенно на старых автомобилях, работают с помощью зубчатой ​​системы, которая переключает передачи при переключении передач. С автоматической коробкой передач вы вообще не переключаетесь — машина делает это за вас.

Основы

По сути, сцепление работает с помощью рычага переключения передач или рычага переключения передач.Вы нажимаете на сцепление ногой, и это приводит в движение маховик. Это работает с нажимным диском, расцепляя диск сцепления и останавливая вращение карданного вала. Затем пластина отпускается и снова включается в выбранную вами передачу.

Гидравлика

Гидравлическое сцепление работает по тому же основному принципу, но отличается от своего механического аналога меньшим количеством компонентов. Этот тип сцепления имеет резервуар с гидравлической жидкостью, и когда вы нажимаете на педаль сцепления, жидкость становится под давлением.Он работает вместе с диском сцепления, чтобы отключить передачу, на которой вы находитесь, и включить новую передачу.

Техническое обслуживание

Важно быть уверенным, что у вас всегда достаточно жидкости. Для большинства автомобилей это не проблема. Это замкнутая система, поэтому обычно ваша жидкость должна служить в течение всего срока службы автомобиля и ее не нужно менять. Исключением, конечно же, являются те, у кого есть привычка водить очень старый автомобиль. Затем из-за износа может возникнуть утечка, и вам потребуется долить жидкость.Вам не придется беспокоиться о покупке чего-нибудь необычного — подойдет простая тормозная жидкость.

Проблемы

Очевидно, что ваша система переключения передач жизненно важна для работы вашего автомобиля. Гидравлическое сцепление обеспечивает переключение передач, и если оно не работает, вы обнаружите, что едете на одной передаче — правда, ненадолго. Вам нужно будет проверить это у механика. Чтобы избежать проблем с гидравлической муфтой, лучше всего избегать практики, известной как «движение на сцеплении».Это просто означает, что вы выработали привычку постоянно держать ногу на педали сцепления, поднимая и опуская ее, чтобы регулировать скорость. Вот для чего нужны ваши тормоза! При правильном уходе ваша гидравлическая муфта прослужит долго.

Система активации сцепления — x-engineer.org

В транспортном средстве с двигателем внутреннего сгорания (ДВС) двигатель соединен с остальной трансмиссией через соединительное устройство, которым может быть сцепление или преобразователь крутящего момента.Одна из функций муфты (преобразователя крутящего момента) заключается в временном прерывании потока мощности между двигателем и трансмиссией (например, для переключения передач).

Для автомобиля с механической коробкой передач система приведения в действие сцепления (механизм) представляет собой интерфейс между водителем и сцеплением, который позволяет водителю управлять включением (включением) и отключением (выключением) сцепления.

Чтобы понять, как работает сцепление, прочтите статью Как работает сцепление .

Система включения сцепления может быть механической , гидравлической или электрической (проводной) . Системы механического срабатывания могут быть с металлическими стержнями и стержнями или с металлическим тросом.

По сравнению с механической системой срабатывания сцепления, гидравлическая система срабатывания намного более гибкая и надежная. Системы срабатывания гидравлической муфты обеспечивают оптимальное и постоянное усилие на педали, изготовлены из гораздо более легких материалов (снижение веса до 70% по сравнению со стандартной системой сцепления) и намного компактнее.

На схеме ниже мы видим основные компоненты системы срабатывания гидравлической муфты .

Изображение: Компоненты сцепления с исполнительной системой

  1. двухмассовый маховик
  2. крышка сцепления
  3. механический выжимной рычаг
  4. устройство гашения колебаний педали
  5. главный цилиндр сцепления (CMC)
  6. пластиковая педаль сцепления
  7. рабочий цилиндр сцепления (CSC)
  8. диск сцепления (фрикционный)

В зависимости от типа срабатывания диафрагменной пружины муфты подразделяются на:

  • муфты нажимного типа
  • муфты тянущие

Изображение: нажимного и тяговое сцепление
Кредит: ZF Sachs

  1. корпус сцепления (крышка)
  2. нажимной диск
  3. заклепка
  4. выжимной подшипник
  5. пружина диафрагмы (внутренний рычаг)
  6. пружина диафрагмы (внешний рычаг)
  7. приводной ремень

В муфте нажимного типа , когда педаль сцепления нажата, выжимной подшипник нажимает на диафрагму пружина и нажимной диск освобождают фрикционный диск сцепления.

В тяговом сцеплении , когда педаль сцепления нажата, выжимной подшипник тянет диафрагменную пружину, и нажимной диск освобождает фрикционный диск сцепления.

Системы сцепления нажимного типа с гидравлическим приводом широко используются в легковых автомобилях.

Системы приведения в действие сцепления должны соответствовать нескольким конструктивным требованиям:

  • они должны обеспечивать полное выключение сцепления
  • они должны обеспечивать плавное включение и выключение сцепления
  • усилие на педали сцепления должно быть около 100… 150 Н, что означает, что для выключения сцепления требуется умеренное или низкое усилие на педали.
  • Ход педали сцепления должен составлять около 120… 150 мм, что означает, что водитель должен иметь возможность нажимать педаль сцепления до ее конечного положения
  • он должен иметь механизмы автоматической компенсации износа сцепления, что означает, что усилие на педали должно иметь такую ​​же характеристику, даже если ширина фрикционного диска становится меньше
  • должна быть компактной системой, иметь легкую конструкцию, которая может быть быстро и легко собрана
  • большинство компонентов должны быть изготовлены из материалов, пригодных для вторичной переработки
  • должны быть устойчивы к коррозии
  • должны быть фильтром исключают структурные колебания автомобиля (не влияют на ощущение водителя)

Крутящий момент сцепления регулируется усилием педали сцепления.Поскольку он косвенно регулирует крутящий момент на колесе, очень важно, чтобы система срабатывания гидравлической муфты работала без сбоев, была надежной и гарантированно долгим сроком службы.

Как работает система срабатывания гидравлической муфты

Принцип работы системы срабатывания гидравлической муфты основан на законе Паскаля (также известном как принцип Паскаля или принцип передачи гидравлического давления).

Изображение: Гидравлическая система управления сцеплением (тяговая) — схема
Кредит: Eaton

  1. главный цилиндр
  2. резервуар
  3. поршень
  4. трубопровод высокого давления (труба)
  5. рабочий цилиндр
  6. толкатель

сцепление педаль соединена непосредственно с поршнем (3) главного цилиндра (1).Когда водитель нажимает на педаль сцепления, поршень перемещается в главном цилиндре и сжимает гидравлическую жидкость, создавая давление. Давление передается по трубопроводу высокого давления (4) на рабочий цилиндр (5). Толкатель (6) соединен с поршнем цилиндра мази. Из-за увеличения давления в рабочем цилиндре толкатель выталкивается наружу, воздействуя на вилку сцепления, которая освобождает нажимной диск и размыкает сцепление.

Гидравлическая жидкость, используемая для приведения в действие, обычно тормозная жидкость или минеральное масло.

Во время срабатывания ход педали сцепления R преобразуется (механико-гидравлически-механический) в ход выжимного подшипника r .

Изображение: Гидравлическая система привода сцепления — компоненты
Кредит: Eaton

  1. главный цилиндр
  2. резервуар
  3. адаптер
  4. шланг и фитинг
  5. рабочий цилиндр (или серво пневмо / гидравлический)
  6. (опционально) регулятор воздуха
  7. Корпус и вилка в сборе
  8. сцепление

Главный цилиндр сцепления (CMC) соединен непосредственно с педалью сцепления через поршень и толкающий стержень.Толкающая сила привода действует на поршень, который сжимает гидравлическую жидкость внутри главного цилиндра. Механическое усилие на педали сцепления преобразуется в гидравлическое давление и поток, передаваемый по шлангу (трубам) в рабочий цилиндр, и преобразуется обратно в механическое усилие на вилке сцепления.

Изображение: Главный цилиндр сцепления
Кредит: FTE automotive

  1. Соединитель трубы сцепления
  2. Соединитель датчика положения
  3. Головка поршневого штока
  4. байонетный штуцер для педали
  5. Датчик положения

Некоторые варианты главных цилиндров сцепления имеют датчики хода , которые отправляют положение педали сцепления (поршня) обратно в электронный блок управления (ЭБУ).

Технические данные главного цилиндра сцепления

Авторы и права: FTE automotive

Рабочее давление [бар] <50
Сопротивление вакуума [мбар] <2
Диапазон температур [° C] -40… 130
Пиковая температура [° C] 150
Диапазон диаметров [мм] 15,87… 38,1
Диапазон хода [мм] <45
Рабочая среда Тормозная жидкость или минеральное масло

Повышенное давление в главном цилиндре передается по трубам (шлангам) на рабочий цилиндр сцепления (CSC).

Изображение: Рабочий цилиндр сцепления
Кредит: FTE automotive

Одно из требований к трубке / шлангу в сборе — отфильтровать внешние вибрации, чтобы обеспечить удобную работу педали сцепления. По этой причине трубы сцепления оснащены демпфирующими компонентами, такими как частотные модуляторы , или гасители вибрации.

Изображение: Узел шланг-труба сцепления
Кредит: FTE automotive

  1. частотный модулятор (компактная конструкция)
  2. разъем
  3. частотный модулятор

Технические данные трубно-шланговый узел

Кредит: FTE automotive

Рабочее давление [бар] <50
Сопротивление вакууму [мбар] <2
Диапазон температур [° C] -40… 130
Пиковая температура [° C] 160
Внешний диаметр трубки [мм] 4.75 или 6
Внутренний диаметр трубки [мм] 3,2 или 6
Рабочая среда Тормозная жидкость или минеральное масло

Технические характеристики пластиковой трубы

Кредит: FTE automotive

Рабочее давление [бар] <50
Сопротивление вакууму [мбар] <2
Диапазон температур [° C] -40… 130
Пиковая температура [ C] 160
Наружный диаметр [мм] 8
Толщина стенки [мм] 2.15
Рабочая среда Тормозная жидкость или минеральное масло

Рабочий цилиндр сцепления получает гидравлическую энергию (давление и поток) от главного цилиндра и преобразует ее обратно в механическую силу. Давление внутри рабочего цилиндра выталкивает поршень, который воздействует на вилку сцепления, размыкая сцепление.

Когда водитель отпускает педаль сцепления, давление внутри главного цилиндра и рабочего цилиндра уменьшается и позволяет диафрагменной пружине отталкиваться назад (в случае нажимного сцепления) через вилку сцепления, поршень / толкатель в рабочий цилиндр.

Система включения сцепления статична относительно кузова автомобиля. Нажимной диск сцепления и диафрагменная пружина вращаются вместе с коленчатым валом двигателя внутреннего сгорания. Устройство выключения сцепления должно обеспечивать связь между статическим элементом (поршень / толкатель рабочего цилиндра) и подвижным элементом (диафрагменная пружина). Это требование может быть достигнуто либо за счет использования выжимного подшипника вместе с вилкой сцепления, либо за счет использования концентрического рабочего цилиндра .

Изображение: Концентрический рабочий цилиндр сцепления
Кредит: FTE automotive

Концентрические рабочие цилиндры содержат также выжимной подшипник. В этом узле нет необходимости в вилке сцепления, рабочий цилиндр установлен концентрично диафрагменной пружине сцепления.

Технические данные Рабочий цилиндр сцепления

Кредит: FTE automotive

Рабочее давление [бар] <50
Сопротивление вакууму [мбар] <2
Диапазон температур C] -40… 120
Пиковая температура [° C] 150
Диапазон диаметров [мм] 15.87… 38,1
Рабочая среда Тормозная жидкость или минеральное масло

Технические данные концентрический рабочий цилиндр

Кредит: FTE automotive

Рабочее давление [бар] 9025 <50 9022
Сопротивление вакууму [мбар] <2
Диапазон температур [° C] -40… 180
Пиковая температура [° C] 200
Макс.нагрузка выключения [Н] <7000
Рабочая среда Тормозная жидкость или минеральное масло

Системы срабатывания сцепления по проводам

Независимое управление сцеплением со стороны водителя дает некоторые возможности с точки зрения улучшение топливной экономичности транспортного средства и снижение выбросов выхлопных газов. Эти улучшения могут быть достигнуты, когда автомобиль переходит в режим выбега.

Автомобиль Выбег (также называемый Sailing ) означает, что двигатель отделен от остальной трансмиссии, и транспортное средство движется за счет своей кинетической энергии (инерции).Автомобиль может выполнять два типа функций выбега:

  • Выбег на холостом ходу : когда двигатель отсоединен от трансмиссии, но поддерживается на холостом ходу
  • Выкл. Выбегом : когда двигатель отсоединен от трансмиссии и остановлен

Сценарий Off Coasting дает наибольшее улучшение экономии топлива, но он может повлиять на управляемость транспортного средства с точки зрения времени, необходимого для разгона транспортного средства после события выбега.

Выбегом можно легко добиться на автомобилях с автоматической механической коробкой передач (AMT), коробкой передач с двойным сцеплением (DCT) или автоматической коробкой передач (AT) благодаря электронному управлению сцеплениями.

На автомобиле с механической коробкой передач (МТ) для включения выбега необходимо управлять сцеплением независимо от намерения водителя.

Schaeffler разработала ряд интеллектуальных систем активации сцепления для автомобилей с механической коробкой передач, которые автоматически отключают сцепление и позволяют автомобилю перейти в режим выбега.

Изображение: Электронное сцепление (E-Clutch)
Кредит: Schaeffler

В концепции с проводным сцеплением отсутствует механическое или гидравлическое соединение между педалью сцепления и системой выключения сцепления.Чтобы поддерживать такое же поведение относительно водителя (получать противодействующую силу при нажатии педали сцепления), в педаль сцепления интегрирован регулятор усилия на педали .

Со стороны сцепления рабочий цилиндр заменен электронным гидравлическим приводом , который создает необходимое давление для управления положением сцепления.

Система педали сцепления также содержит датчик хода , который передает информацию о положении педали сцепления на привод сцепления.Основываясь на этой информации, привод сцепления регулирует гидравлическое давление и, следовательно, размыкание / закрытие сцепления.

Электропроводные системы сцепления также могут адаптировать состояние сцепления к условиям движения с очень высокими динамическими требованиями, например, к быстрому переключению передач или экстренному торможению. Системы с электродвигателем сцепления также могут включать в себя другие опции, такие как функция предотвращения сваливания или функции помощи водителю для снятия стресса в дорожных ситуациях с остановкой и запуском.

Не забывайте ставить лайки, делиться и подписываться!

Как работает гидравлическая система сцепления

Если трансмиссия вашего автомобиля оснащена гидравлическим сцеплением, скорее всего, вам интересно, как именно оно работает в вашей системе переключения.Большинство сцеплений, особенно на старых автомобилях, работают с помощью зубчатой ​​системы, которая переключает передачи при переключении передач. С автоматической коробкой передач вы вообще не переключаетесь — машина делает это за вас.

Основы

По сути, сцепление работает с помощью рычага переключения передач или рычага переключения передач. Вы нажимаете на сцепление ногой, и это приводит в движение маховик. Это работает с нажимным диском, расцепляя диск сцепления и останавливая вращение карданного вала.Затем пластина отпускается и снова включается в выбранную вами передачу.

Гидравлика

Гидравлическое сцепление работает по тому же основному принципу, но отличается от своего механического аналога меньшим количеством компонентов. Этот тип сцепления имеет резервуар с гидравлической жидкостью, и когда вы нажимаете на педаль сцепления, жидкость становится под давлением. Он работает вместе с диском сцепления, чтобы отключить передачу, на которой вы находитесь, и включить новую передачу.

Техническое обслуживание

Важно быть уверенным, что у вас всегда достаточно жидкости.Для большинства автомобилей это не проблема. Это замкнутая система, поэтому обычно ваша жидкость должна служить в течение всего срока службы автомобиля и ее не нужно менять. Исключением, конечно же, являются те, у кого есть привычка водить очень старый автомобиль. Затем из-за износа может возникнуть утечка, и вам потребуется долить жидкость. Вам не придется беспокоиться о покупке чего-нибудь необычного — подойдет простая тормозная жидкость.

Проблемы

Очевидно, что ваша система переключения передач жизненно важна для работы вашего автомобиля.Гидравлическое сцепление обеспечивает переключение передач, и если оно не работает, вы обнаружите, что едете на одной передаче — правда, ненадолго. Вам нужно будет проверить это у механика. Чтобы избежать проблем с гидравлической муфтой, лучше всего избегать практики, известной как «движение на сцеплении». Это просто означает, что вы выработали привычку постоянно держать ногу на педали сцепления, поднимая и опуская ее, чтобы регулировать скорость. Вот для чего нужны ваши тормоза! При правильном уходе ваша гидравлическая муфта прослужит долго.

Подготовка сцепления: базовая установка гидравлического сцепления

Основное руководство по настройке гидравлического сцепления

Давление со стороны сверстников может быть жестким, куда бы вы ни обратились, кто-то говорит вам, как вы должны строить свой проект. Вам нужно использовать этот двигатель, эти шины — отстой, хром отсутствует, полировка присутствует, черт возьми, просто покрасить все в черный цвет. То же самое и с преобразованием трансмиссии, некоторые из вас сделали новое преобразование с 5 или 6 скоростями, и некоторые из вас думают об этом.Тогда возникает вопрос, использовать ли я механическое сцепление или гидравлическое сцепление? Большинство преобразований по той или иной причине завершается гидравлическим преобразованием, но если вы не уверены или хотите получить дополнительную информацию … прочтите!


Гидравлическое сцепление существует уже довольно давно и стало стандартным оборудованием легковых / грузовых автомобилей с механической трансмиссией с 1980-х годов по настоящее время. В самом упрощенном виде гидравлическая система работает так же, как ваша тормозная система, только в гораздо меньшем масштабе.Педаль сцепления толкает шток, соединенный с поршнем внутри главного цилиндра. Этот поршень проталкивает жидкость по трубопроводу вниз к рабочему цилиндру или гидравлическому выжимному подшипнику, который затем прикладывает силу к нажимному диску, чтобы выключить сцепление. Когда вы отпускаете педаль сцепления, жидкость теряет свое давление, и сила пружины нажимного диска перемещает подшипник назад, позволяя диску снова войти в зацепление. Достаточно просто, но во всем этом есть некоторая физика, которая может превратить гидравлическое сцепление в мечту или кошмар в зависимости от настройки.

Иногда оба называются «подчиненными цилиндрами», но слева вы видите гидравлический выжимной подшипник, а справа — внешний рабочий цилиндр.

Если у вас был какой-либо опыт вождения автомобиля или грузовика с механической коробкой передач, которые были оснащены механической тягой, скорее всего, вы управляли автомобилем с педалью сцепления, которую только кузовостроитель чувствовал бы комфортно, нажимая на нее. Там происходит пара вещей. 1. В какой-то момент была установлена ​​«высокопроизводительная» муфта.Один из способов заставить сцепление удерживать большую мощность — это придать нажимному диску большую жесткость пружины, что позволит ему сильнее прижиматься к диску, чтобы он не проскальзывал. Это, в свою очередь, затрудняет нажатие, и это приводит к возвращению на педаль. 2. Механическое соединение не настроено должным образом, и вы не получаете достаточного рычага давления на пружины прижимного диска, чтобы получить хороший легкий толчок. 3. Вам нужно перестать пропускать день в тренажерном зале.

Системы гидравлического сцепления

также могут иметь те же проблемы с педалями, что и механические сцепления, но только потому, что размер отверстия главного цилиндра и передаточное число педалей не оптимизированы для вашей ситуации.Гидравлическое давление можно использовать для перемещения большего количества груза с меньшими усилиями при правильной настройке. Вот почему так важно всегда обращаться за советом при сборке гидравлической системы сцепления. Большинство комплектов для конкретных автомобилей, представленных сегодня на рынке, оптимизированы для автомобилей, для которых они созданы, и, как правило, вы получаете отличное ощущение педали и общую чистую установку. Конечно, нужно иметь в виду, что ощущения от педали субъективны, особенно для тех из вас, кто постоянно пропускает тренировку ног в тренажерном зале.То, что приятно для одного человека, может показаться другим слишком жестким или слишком мягким, и если вы окажетесь в такой ситуации, вы обычно можете поменять отверстие на другое отверстие главного цилиндра, чтобы решить проблему.

Мастер-цилиндры

бывают всех размеров и стилей, что позволяет использовать их в самых разных областях.


Основное правило: чем меньше диаметр отверстия, тем легче ощущается педаль, пока вы сохраняете соотношение движения педали в одном и том же месте. Большинство производителей главных цилиндров рекомендуют передаточное число педалей около 6: 1 для лучшего ощущения.Вы не всегда можете достичь оптимального передаточного числа педали из-за ограничений вашей настройки, и может потребоваться отрегулировать размер отверстия главного цилиндра, чтобы компенсировать разницу. Это также область, в которой вам нужно быть осторожными, поскольку вы уменьшаете размер отверстия, вам также необходимо увеличивать ход поршня, чтобы получить эквивалентное количество движения жидкости. Каждый гидравлический подшипник или рабочий цилиндр потребует определенного движения жидкости для достижения полного хода. Убедитесь, что движение жидкости в главном цилиндре соответствует требованиям подшипника или рабочего цилиндра, который вы хотите использовать.

После того, как вы выберете детали, которые вы собираетесь использовать, не менее важно правильно их установить. Если вы создаете систему с нуля, очень важно убедиться, что когда педаль сцепления нажимает на поршень главного цилиндра, это происходит по прямой линии. Мы видели, как многие главные цилиндры выходили из строя из-за боковой нагрузки. У большинства главных цилиндров здесь есть немного места для маневра, но не забирайте ногу, когда вам дают только дюйм.Мы также рекомендуем использовать высококачественные фитинги и соединительные элементы для соединения. Не стоит дешеветь здесь, когда лучшее можно получить всего за несколько долларов дороже. Одна из лучших частей комплекта гидравлического сцепления — отсутствие множества движущихся частей, которые мешают работе коллекторов и выхлопной системы. Тем не менее, это не дает вам свободы для привязки гидравлической линии к коллекторной трубе. Держите все гидравлические линии как можно дальше от тепла и истирания, чтобы обеспечить бесперебойную работу.То же самое и внутри корпуса колокола. Для некоторых подшипников потребуется гибкий шланг, подсоединенный к основанию подшипника внутри колпака. Обязательно закрепите все свои линии, чтобы они не могли двигаться. Мы видели больше отказов трубопроводов из-за контакта с прижимной пластиной, чем любых других отказов.

После того, как вы втиснете маховик, муфту и подшипник, внутри кожуха раструба не так много места, поэтому очень важно сохранить эти гибкие линии закрепленными.


Хотя все еще есть некоторые критики, которые скажут вам, что системы гидравлического сцепления опасны и могут выйти из строя, поэтому вам следует придерживаться механического сцепления, но сегодня доступно достаточно высококачественных вариантов, которые дадут вам отличные результаты при правильном соединении.Производители оригинального оборудования используют гидравлические системы в течение многих лет без каких-либо серьезных проблем, поэтому нет оснований полагать, что только потому, что ваш автомобиль не пришел таким образом, его нельзя заставить работать таким образом. Как и все остальное, что вы изменяете в своем проекте, при тщательном планировании и выполнении гидравлическая система сцепления может стать прекрасным обновлением.

Следите за обновлениями, поскольку мы обсудим конкретную настройку и удаление воздуха из гидравлической системы сцепления в следующем информационном бюллетене. Если вам нравится то, что вы читаете, обязательно поделитесь этим с друзьями.


Теперь мы предлагаем бесплатную доставку, рычаг переключения передач и ручку переключения передач для всех трансмиссий Tremec, приобретенных через Интернет. Щелкните ссылку на кнопку ниже, чтобы получить дополнительную информацию!

Как удалить воздух из гидравлического сцепления —

Владение автомобилем с механической коробкой передач доставляет множество радостей. Наличие педали сцепления у ног и рычага переключения передач в руке дает вам такой уровень контроля над автомобилем, который водители с автоматической коробкой передач не могут оценить.Однако, несмотря на то, что автомобили с механической коробкой передач имеют определенные преимущества, они также сопряжены с определенными проблемами. Одна из этих проблем — недостаточная отзывчивость сцепления, что может потребовать прокачки системы.

Вы, вероятно, не думали, что подписывались, чтобы прокачать сцепление, когда покупали автомобиль с механической коробкой передач. Однако, если вам нужно это сделать, лучше знать, как прокачать сцепление, чем обращаться к механику и нести большой счет за ремонт того, что вы можете сделать самостоятельно на подъездной дорожке.

Что такое гидравлическое сцепление?

Во-первых, важно понять, как работает гидравлическое сцепление. Гидравлические муфты были введены в качестве альтернативы механически связанным муфтам, поскольку они требуют меньшего количества движущихся частей, которые могут выйти из строя и потребовать регулировки или замены. Гидравлическое сцепление работает с главным и рабочим цилиндрами. Когда вы нажимаете на сцепление, толкатель проталкивает жидкость через трубку в рабочий цилиндр, активируя поршень, соединенный с рабочим цилиндром, который выключает сцепление через выжимной подшипник.

Почему мне нужно удалить воздух из сцепления?

Прокачка сцепления означает удаление части жидкости, чтобы удалить лишний воздух. Зачем прокачивать сцепление? Не прокачивайте сцепление, если оно у вас не возникло. Что за проблема? Иногда ваше сцепление может сопротивляться отпусканию. Другими словами, если вы включили сцепление и пытаетесь переключиться, сцепление может бороться с вами и пытаться оставаться на передаче. Если это происходит, вероятно, это связано с воздухом в системе сцепления.

Почему это проблема? Ваше сцепление — это гидравлическое сцепление, то есть оно работает в соответствии с системой давления гидравлической жидкости, как упоминалось выше. Жидкость позволяет системе создавать необходимое давление для работы сцепления. Именно эта жидкость, которую главный цилиндр проталкивает через рабочий цилиндр, включает систему. Если в системе есть воздух, вы не получаете достаточного давления и сцепление не может полностью включиться.

Прокачка муфты — это процесс, при котором вы удаляете всю жидкость, находящуюся в настоящее время в системе, удаляя всю жидкость и воздух и заменяя ее чистой жидкостью.

Как удалить воздух из муфты

Необходимое оборудование и инструменты для прокачки муфты

  • Кто-то, кто поможет прокачать муфту
  • Гаечный ключ
  • Жидкость сцепления

Шаги по прокачке гидравлической муфты

Основные действия, необходимые для прокачки жидкость для сцепления:

  • Шаг первый: Проверьте уровень жидкости, которая в данный момент находится в резервуаре для жидкости сцепления. Залейте новую жидкость для сцепления до уровня заливки.
  • Шаг второй: Найдите спускной винт и поставьте под него поддон.
  • Шаг третий: Попросите помощника несколько раз накачать сцепление, затем нажмите на него до упора и удерживайте.
  • Шаг четвертый: Возьмите гаечный ключ и немного открутите спускной винт, примерно на пол-оборота. Вы должны услышать и увидеть жидкость и воздух, выходящие из клапана.
  • Шаг пятый: Когда кровотечение замедлится, затяните винт.Как только он будет полностью затянут, вы можете отпустить педаль сцепления и добавить еще жидкости для сцепления.
  • Шаг шестой: Повторяйте этот процесс до тех пор, пока при открытии спускного винта не будет выходить только жидкость, и вы не услышите шипение или выход воздуха. Снова затяните спускной винт, сделав его немного крепче, но не слишком сильно. Убедитесь, что резервуар для жидкости полон.

Это должно решить проблему со сцеплением. Вы можете сначала проехать на парковке, подъездной дорожке или в другом ненаселенном месте, чтобы убедиться, что проблема со сцеплением решена.Когда машина припаркована, вы можете оставить под ней кусок белой бумаги или картона, чтобы убедиться, что жидкость не протекает. Если это так, это, вероятно, означает, что вам нужно затянуть спускной винт.

Важно отметить, что вы никогда не должны полностью сливать жидкость из муфты во время этой процедуры. Вы прокачиваете сцепление, а не истощаете сцепление. Если вы полностью опустошите бачок жидкости сцепления, возможно, при наполнении вы получите в нем больше воздуха, и вам придется выполнять все действия заново.

Утечки жидкости сцепления


Возможно, ваша гидравлическая система сцепления попала в воздух из-за утечки где-то в системе — это наиболее распространенная проблема, о которой мы слышим от клиентов, которые звонят нам или пишут в Facebook. Если вы подозреваете, что дело обстоит именно так, вместо доливки обычной жидкости для сцепления вы захотите заполнить резервуар сцепления жидкостью для гидравлического сцепления с усовершенствованной системой защиты от утечек Bar’s Leaks с функцией Stop Leak. Этот продукт делает все, что делает жидкость для сцепления высшего качества, но он также включает добавки, которые останавливают утечки и восстанавливают уплотнения, чтобы предотвратить потерю жидкости или попадание воздуха.Он устранит любые утечки и защитит от любых потенциальных проблем с утечками в будущем.

Фактически, вы, вероятно, захотите использовать этот продукт в любое время, когда вам понадобится добавить жидкость для сцепления. Это одна из самых эффективных жидкостей для сцепления на рынке, поэтому вы будете наслаждаться плавным переключением передач и более длительным сроком службы сцепления с дополнительным преимуществом, заключающимся в том, что вам не нужно беспокоиться о слабых или умеренных утечках.

Trust Bar’s Leaks

Если вы все же решили защитить свое сцепление с помощью жидкости для предотвращения утечек, убедитесь, что вы используете продукт Bar’s Leaks.Bar’s Leaks — это имя, пользующееся наибольшим доверием в области химических добавок для предотвращения утечек, с многолетним опытом разработки проверенных решений для химического ремонта. Если вы используете другую торговую марку, нет никаких гарантий качества или способности продукта герметизировать любые утечки в вашей гидравлической системе сцепления.

Если вы не знаете, где найти продукты Bar’s Leaks рядом с вами, у нас есть страница поиска, которая может вам помочь. А если у вас есть какие-либо вопросы о прокачке муфты, жидкости для сцепления Bar’s Leaks или любом продукте для предотвращения утечек Bar’s Leaks, свяжитесь с Bar’s Leaks прямо сейчас.Мы рады помочь.

Вот как отремонтировать гидравлическую систему сцепления вашего автомобиля


ИЗОБРАЖЕНИЕ Paulo Subido

Гидравлическая система , которая приводит в действие сцепление в вашем автомобиле с механической коробкой передач, не прослужит вечно. Как и любой предмет износа, главный и подчиненный цилиндры рано или поздно выйдут из строя. Ведомый, расположенный рядом с коробкой передач, обычно идет первым. Раньше использовался трос сцепления, но в более новых автомобилях используется гидравлическая система. Для таких энтузиастов старой школы, как я, предпочтение отдается кабельному типу.Тем не менее, у гидравлической системы есть свои преимущества. Он не выйдет из строя, как оборванный кабель. Будут предупреждающие знаки. Вот на что нужно обратить внимание.

Читать ниже ↓


ИЗОБРАЖЕНИЕ Paulo Subido

Читать ниже ↓

Рекомендованные видео

Что вам понадобится:

* Тормоз

* Жидкость

* Главный цилиндр сцепления

* Цилиндр тормозной сцепления

* Защита глаз и рук

* Тряпки и вода

Уровень сложности:

* Если у вас есть торцевой ключ и трещотка, эта работа будет довольно простой и увлекательной.


ИЗОБРАЖЕНИЕ Paulo Subido

Читать ниже ↓

Установить? Вот как это сделать:

Какого цвета жидкость сцепления в бачке главного цилиндра? Если он темный и грязный, это признак того, что он скоро выйдет из строя. Теперь найдите рабочий цилиндр сцепления. Обычно он располагается на раструбе коробки передач, рядом с диском сцепления, нажимным диском и выжимным подшипником.

Отключить ведомое сцепление сначала .Будьте осторожны с металлической линией сцепления и фурнитурой. Вы не хотите повредить ни одну из линий. Будьте готовы собрать любую жидкость сцепления, используя какую-либо бутылку. Жидкость грязная и черная. Далее снимаем мастер сцепления.

Промойте трубопровод сцепления, закачав в него чистую тормозную жидкость. . Используйте чистую масленку и гибкий шланг. Теперь установите главный и рабочий цилиндры, но не перетягивайте фитинги. Заполните бачок новой тормозной жидкостью.

Читать ниже ↓

Удалить воздух из системы сцепления .Попросите товарища несколько раз нажать на педаль сцепления, а затем крепко удерживать ее на месте. При нажатой педали откройте спускной винт, чтобы выпустить воздух. Вы это услышите. Повторите прокачку ( bomba ) и удерживайте ( pirme ) цикл до тех пор, пока весь воздух не выйдет из системы и не вернется ощущение педали сцепления.


ИЗОБРАЖЕНИЕ Paulo Subido

Читать ниже ↓

Что важно проверить:

* Гидравлика сцепления не выйдет из строя без предупреждения.Если вам труднее переключиться на передачу, и если педаль сцепления кажется мягкой, пора присмотреться к системе. Изношенные канавки в цилиндре вызывают потерю давления.

* Не принимайте это за проскальзывающий или изношенный диск сцепления. Это совсем другая работа.

Дополнительные подсказки:

* Вы можете купить ремонтный комплект сцепления, но лучше поменять весь узел.

* Тормозная жидкость очень едкая и может разрушить краску.Работайте осторожно. При попадании на окрашенные панели немедленно смойте водой.

* Чтобы продлить срок службы гидравлических частей, меняйте жидкость один раз в год или когда вы заметите обесцвечивание.


ИЗОБРАЖЕНИЕ Paulo Subido

Читать ниже ↓

Примечание. Эта статья впервые появилась в выпуске Top Gear Philippines за декабрь 2016 г.

Также читают


Читать далее

Оставить комментарий

Освоение основ гидравлических систем сцепления

Пожалуйста, отпустите меня

Подходящим определением современного автомобиля с высокими динамическими характеристиками может быть тот, который обладает превосходным контролем над каждой системой.EFI предлагает выдающееся цифровое управление топливом и искрой, и можно сказать, что гидравлика предлагает аналогичный и более конкретный контроль срабатывания сцепления. Вы можете думать об этом так: еще в 30-х годах управление транспортными средствами совершило гигантский скачок вперед, когда на серийных автомобилях появились гидравлические тормоза. Но, как и EFI, системы гидравлического выключения сцепления медленно завоевывают популярность у энтузиастов. Системы кажутся простыми на первый взгляд, но их правильное выполнение иногда может быть проблематичным.Но есть подходящие решения.

Посмотреть все 23 фотографии Гидравлическое сцепление в сборе особенно полезно на ранних автомобилях со сменными двигателями LS, такими как этот Camaro 67 года с карбюраторным LS. Механическое соединение будет заменено на гидравлическую систему, потому что блок LS не предлагает обработанного места для поперечного вала, необходимого для механической системы.

Это становится важным с сегодняшними схемами модернизации двигателей Pro Touring и LS, где ожидается, что правильно построенный маслкар сможет без проблем интегрировать компоненты 21 века в листовой металл 60-х годов и работать так же, как новенькие Camaro или Corvette.

Механические коробки передач далеко не мертвые на улице, но для последних моделей с шестиступенчатой ​​перегрузкой часто требуется гидравлическая система выключения сцепления последней модели, а не механическая система. В этом рассказе будут рассмотрены некоторые основы срабатывания гидравлической муфты. В системе, аналогичной гидравлической тормозной системе автомобиля, используется главный гидравлический цилиндр для создания линейного давления, подключенного (обычно) к внутреннему гидравлическому выжимному подшипнику (HRB), расположенному на входном валу трансмиссии.

Зачем нужно переходить на гидравлическое сцепление в сборе? Системы механического сцепления могут быть проблематичным преобразованием в приложениях для замены двигателей, не являющихся стандартными, например, при установке двигателя LS в Chevelle, Camaro или раннюю Nova.Двигатели LS никогда не оснащались приспособлением для механической подвески Z-образной тяги, поэтому необходимо установить или изготовить кронштейн и модифицировать рычаг, чтобы компенсировать разницу, создаваемую измененной установочной поверхностью маховика двигателя LS. Другие проблемы, которые решает гидравлический привод, включают проблемы с зазором жатки и уменьшение усилия на педали, что делает вождение более приятным.

Посмотреть все 23 фотографии Это макет педального узла McLeod для Camaro 1970-82 годов. Поскольку гидравлическое крепление главного брандмауэра расположено под углом, это определяет угол штока, который соединяется с педалью сцепления, так что это прямой выстрел в главный.Передаточное число педалей и угол хода имеют решающее значение, но МакЛеод встроил все это в этот комплект.

Мы поговорили с Фредом Тейлором из McLeod, который имеет многолетний опыт работы со всеми аспектами конструкции сцепления. Он подчеркнул, что многие энтузиасты считают, что гидравлическая система снизит усилие на педали. Если исходное механическое соединение изношено там, где оно создает чрезмерное трение, тогда гидравлическая система будет лучше. Но в целом, говорит Тейлор, если вам нужно более легкое сцепление, вам нужно будет перейти на более легкий нажимной диск, потому что общие отношения между гидравлическим и механическим сцеплением очень похожи.

Тейлор так описывает это. Если вашему нажимному диску требуется 500 фунтов силы для выключения сцепления, а общее соотношение в системе выключения составляет 10: 1, то для выключения сцепления потребуется 50 фунтов усилия на педаль. Это так просто.

Заводские гидравлические пусковые системы, подобные тем, что используются в последних моделях легковых и грузовых автомобилей с механической коробкой передач, являются практически пуленепробиваемыми благодаря своей оригинальной конструкции. Комплекты для переоборудования вторичного рынка, предлагаемые для конкретных моделей автомобилей, также очень эффективны.Проблемы возникают при попытке переоборудовать старую машину, например Chevy 54-го года, или, возможно, уникальное приложение, такое как Corvair со средним расположением двигателя, с использованием деталей, собранных из нескольких источников. Знание того, как интегрировать системы и как некоторые из наиболее загадочных аспектов установки влияют на общую производительность системы, может иметь большое значение между приятным, заводским ощущением от педали и системой, которая требует нажатия обеих ног на педаль сцепления.

Посмотреть все 23 фотографии Этот полный комплект американской трансмиссии включает главную и гидравлический выжимной подшипник.Обратите внимание, что American использует запатентованное универсальное крепление HydraMax для главного цилиндра, которое идеально соответствует углу тяги, выходящей из педали сцепления.

Существует обширная информация о настройке встроенного гидравлического выжимного подшипника с надлежащим зазором на много миль по улице, поэтому мы потратим на это минимум энергии. Вместо этого мы сосредоточимся на вопросах размещения и установки главного цилиндра и геометрии педали сцепления.

Есть несколько проблем, которые могут мешать гидравлическим системам выключения сцепления.Разумным ходом является использование главного цилиндра, педального узла и гидравлического выжимного подшипника (HRB), которые предназначены для совместной работы. Но для приложений, в которых не существует определенного набора, может оказаться полезным изучение того, как спроектированы эти системы.

Есть несколько вопросов, которые необходимо учитывать при потенциальном преобразовании. Первый — это простая гидравлика. Мы ограничимся этим обсуждением встроенными подшипниками выжимного гидравлического механизма, поскольку они наиболее популярны.

Правильно подобранная система будет производить правильное давление без чрезмерного усилия на педали, что означает, что сила, создаваемая главным гидроцилиндром, правильная.Энтузиасты запутались в относительном размере отверстия главного и подчиненного цилиндров / HRB.

Посмотреть все 23 фотографии Расстояние между точкой поворота педали сцепления и накладкой педали (от A до B) делится на расстояние от оси до точки крепления тяги сцепления (от A до C). Мы используем педаль тормоза, чтобы продемонстрировать это, но эффект соотношения тот же. Если длина педали (от A до B) составляет 12 дюймов, а расстояние между стержнями (от A до C) составляет 2 дюйма, то передаточное число педали составляет 12/2 = 6 для передаточного числа педали 6: 1.Это умножает силу, прилагаемую вашей ногой к штоку сцепления.

Другая сторона этого уравнения — объем. Возможно давление более чем достаточное для приведения в действие фиксирующих пальцев на прижимной пластине, но при этом недостаточный объем. В целом, мастер малого диаметра будет создавать большее давление, чем поршень большего размера, но может страдать от недостаточного объема, что означает, что HRB не переместится достаточно далеко, чтобы выключить сцепление. И наоборот, мастер с увеличенным диаметром поршня предлагает более чем достаточный объем, но будет страдать от более низкого давления, что приведет к очень жесткой педали сцепления.Здесь хорошо работают полные комплекты, объединяющие все компоненты.

Одной из наиболее частых проблем, связанных с преобразованием гидравлической муфты, является утечка через уплотнение главного цилиндра. Это происходит из-за неправильного расположения исполнительного рычага главного цилиндра на педали сцепления в тех случаях, когда система была получена от нескольких поставщиков. Главные цилиндры сцепления чрезвычайно чувствительны к чрезмерным углам между главным и педальным блоком. Ключ к успеху — это правильно расположенный рычаг, который поддерживает минимальный угол между педалью сцепления и главным цилиндром.Тейлор говорит, что минимальное вертикальное перемещение рычага главного цилиндра достигается, когда при половинном перемещении педали рычаг педали сцепления находится под углом 90 градусов к педали. Этого добиться труднее, чем может показаться, потому что при нажатии педали сцепления рычаг перемещается по дуге.

Одним из новаторских решений этой проблемы является крепление главного цилиндра HydraMax компании American Powertrain. Это крепление помещает брандмауэр между двумя большими пластинами из нержавеющей стали с полностью регулируемым углом крепления.

Посмотреть все 23 фотографии Внешний ведомый болт прикрепляется к фланцу на колоколе Т-5 и приводит в действие стандартный выжимной подшипник и рычаг. Преимущество внешних ведомых устройств заключается в том, что в случае неисправности или утечки вам не нужно тянуть трансмиссию, чтобы получить доступ к гидравлическому выжимному подшипнику. К сожалению, существует очень мало внешних ведомых приложений на вторичном рынке, и в настоящее время для автомобилей GM нет ни одного, кроме этой стандартной версии T-5.

Положение стержня педали сцепления также было рассмотрено другими компаниями, которые в настоящее время создают специально разработанные комплекты, которые предлагают системы на болтах, чтобы позволить строителю воспользоваться преимуществами контроля и легкости гидравлического сцепления на Chevelle середины 60-х годов. Chevy II, и даже сейчас некоторые грузовики C10 с пакетом, который предлагает ощущение, подобное Camaro 2019 года.

Не так давно энтузиасты были вынуждены смешивать и сопоставлять части из других приложений для достижения своих целей. В то время как стойкие могут пройти долгий путь, остальной мир может воспользоваться преимуществами комплектов для переоборудования от таких компаний, как American Powertrain, Driveline Components, McLeod Racing, Modern Driveline и других.Часто это включает модифицированную педаль сцепления, которая обеспечивает правильный угол тяги привода.

Настройка любой системы по-прежнему важна, но большинство важных деталей описано в инструкциях. Тейлор говорит, что один аспект, который многие энтузиасты не принимают во внимание, заключается в том, что по мере износа сцепления высота выжимного пальца нажимного диска увеличивается. Этот износ перемещает пальцы прижимной пластины ближе к выжимному подшипнику и требует перенастройки ручного рычажного механизма для поддержания надлежащего свободного хода подшипника.В гидравлических системах выпуска предусмотрен этот дополнительный люфт, поэтому дальнейшие регулировки не требуются.

Давайте использовать в качестве примера установку для гидравлического выжимного подшипника McLeod. В случае выжимного подшипника серии 1300 его общий потенциал хода составляет 0,800 дюйма. Если прижимной диск требует хода 0,400 дюйма для полного выключения сцепления, и мы устанавливаем начальный зазор 0,200 дюйма, это позволяет общий ход выжимного подшипника составлять 0,600 дюйма, что более чем достаточно для выключения сцепления.

Просмотреть все 23 фотографии Одна вещь, которая важна для любого HRB, — это, как правило, штифт или ограничитель, который предотвращает вращение корпуса на входной манжете.

Причина начального зазора 0,200 дюйма заключается в том, чтобы учесть будущий износ сцепления. Этот первоначальный «свободный ход» фактически воспринимается главным цилиндром при первом нажатии на педаль. Но этот зазор важен, потому что по мере износа сцепления пальцы нажимного диска становятся выше, и это 0.200-дюймовый зазор будет уменьшен, но зазор все равно останется. Когда поршень выталкивается обратно внутрь HRB, гидравлический контур компенсирует это, выталкивая жидкость из HRB обратно в главный цилиндр. Это также означает, что при установке главного цилиндра сцепления требуется очень небольшой зазор между штоком педали сцепления и задней частью поршня.

Этот зазор обеспечивает полное втягивание поршня главного цилиндра при отпускании педали сцепления.Когда поршень полностью втянут в отверстие главного цилиндра, это открывает передаточный канал, так что гидравлическая жидкость может возвращаться из контура обратно в резервуар. Это позволяет HRB компенсировать износ сцепления. Несмотря на простоту в эксплуатации, вы можете видеть, насколько важно установить правильный зазор штока поршневого привода при установке системы. После того, как главный стержень установлен, нет причин его регулировать. Никогда не используйте этот стержень для регулировки точки выключения сцепления.

Есть еще немало деталей, связанных с гидравлическими системами сцепления, но этот обзор должен предложить лучшее понимание и оценку гидравлической системы сцепления и преимуществ, которые она дает.CHP

См. Все 23 фотографии Еще одна важная деталь — обеспечить точное расположение колокола для определения центральной линии. В трансмиссиях более поздних моделей, таких как T-56 и Magnum, используются конические роликовые подшипники для входного вала, и эти подшипники не допускают смещения колокола, вызывая проблемы с переключением, которые может быть трудно диагностировать.

Механический рычаг 101
Рычаг сцепления — механический или гидравлический — использует рычаг для выполнения своей работы. Предположим, что прижимной диск с высокими характеристиками требует силы 500 фунтов, чтобы сжать пальцы, зажимающие сцепление.При механической навеске рычаг начинается с передаточного числа педали. На раннем Camaro мы измерили соотношение 3: 1. Z-образный стержень добавляет еще 2,1: 1 вместе с соотношением 2: 1 от выжимного рычага, который приводит в действие выжимной подшипник. Умножьте их вместе, и мы получим соотношение 12,6: 1.

Если мы разделим усилие нажимного диска в 500 фунтов на общее передаточное число рычагов 12,6: 1, в результате получится усилие на педаль в 39,7 фунтов, необходимое для выключения сцепления.

По словам Тейлора, система МакЛеода создает гидравлическое соотношение 2: 1 между главным и гидравлическим выжимным подшипником (HRB).Таким образом, когда главный поршень сцепления перемещается на один дюйм, это перемещает HRB на 1/2 дюйма. Для этого необходимо, чтобы передаточное число педалей стало 6: 1, чтобы числа были похожи на желаемое передаточное отношение механического рычага, равное 12: 1.

Если мы приложим к педали усилие в 42 фунта, умноженное на соотношение педалей 6: 1 и умножив это на гидравлическое соотношение 2: 1, мы получим: 42 x 6 x 2 = 504 фунта силы на давление. диск для выключения сцепления. Это подтверждает идею о том, что при аналогичных соотношениях гидравлическая система создает такое же усилие на педали, что и правильно работающая механическая система.

Посмотреть все 23 фотографииМы установили стандартный узел муфты диафрагмы на нашем сверлильном станке вместе с индикатором часового типа для измерения хода, необходимого для отпускания муфты диафрагмы. В данном конкретном случае расстояние было всего лишь чуть больше 0,300 дюйма. Не все сцепления одинаковы, поэтому нормальным является расстояние 0,3000,500 дюйма. Если вся система рычагов имеет общее соотношение 12: 1 и педаль сцепления перемещается на 6 дюймов, то 6/12 = 0,500 дюйма хода выжимного подшипника. См. Все 23 фотографии. Это гидравлический выжимной подшипник серии McLeod 1300.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *