Мощность и крутящий момент — что это? Крутящий момент авто


Мощность и крутящий момент - что это?

ЧТО ТАКОЕ ЛОШАДИНАЯ СИЛА?

— У тебя сколько сил? — такой вопрос слышал любой, кто хоть немного касался мира автомобилей. Никому даже пояснять не надо, какие силы на самом деле имеются в виду — лошадиные. Именно в них мы привыкли оценивать мощность мотора, одну из важнейших потребительских характеристик машины.

Уже и гужевого транспорта практически не осталось даже в деревнях, а эта единица измерения живёт и здравствует больше ста лет. А ведь лошадиная сила — величина, по сути, нелегальная. Она не входит в международную систему единиц (полагаю, многие со школы помнят, что называется она СИ) и потому не имеет официального статуса. Более того, Международная организация законодательной метрологии требует как можно скорее изъять лошадиную силу из обращения, а директива ЕС 80/181/EEC от 1 января 2010 прямо обязует автопроизводителей использовать традиционные «л.с.» только как вспомогательную величину для обозначения мощности.

Но не зря считается, что привычка — вторая натура. Ведь говорим же мы в обиходе «ксерокс» вместо копир и обзываем клейкую ленту «скотчем». Вот и непризнанные «л.с.» сейчас используют не только обыватели, но и едва ли не все автомобильные компании. Какое им дело до рекомендательных директив? Раз покупателю удобнее — пусть так и будет. Да что там производители — даже государство на поводу идёт. Если кто забыл, в России транспортный налог и тариф ОСАГО именно от лошадиных сил высчитываются, как и стоимость эвакуации неправильно припаркованного транспорта в Москве.

Лошадиная сила родилась в эпоху промышленной революции, когда потребовалось оценить, насколько эффективно механизмы заменяют животную тягу. По наследству от стационарных двигателей эта условная единица измерения мощности со временем перешла и на автомобили

И никто бы к этому не придирался, если не одно весомое «но». Задуманная, чтобы упростить нам жизнь, лошадиная сила на самом деле вносит путаницу. Ведь появилась она в эпоху промышленной революции как совершенно условная величина, которая не то что к автомобильному мотору, даже к лошади имеет достаточно опосредованное отношение. Смысл этой единицы в следующем — 1 л.с. достаточно, чтобы поднять груз массой 75 кг на высоту 1 метр за 1 секунду. Фактически, это сильно усреднённый показатель производительности одной кобылы. И не более того.

Иными словами, новая единица измерения очень пригодилась промышленникам, добывавшим, к примеру, уголь из шахт, и производителям соответствующего оборудования. С её помощью было проще оценить преимущество механизмов над животной силой. А поскольку приводились станки уже паровыми, а позднее и керосиновыми двигателями, то «л.с.» перешли по наследству и к  самобеглым экипажам.

Джеймс Уатт — шотландский инженер, изобретатель, учёный, живший в XVIII — начале XIX века. Именно он ввёл в обращение как «нелегальную» сейчас лошадиную силу, так и официальную единицу измерения мощности, которую назвали его именем

По иронии судьбы изобрёл лошадиную силу человек, именем которого названа официальная единица измерения мощности — Джеймс Уатт. А поскольку ватт (а точнее, применительно к могучим машинам, киловатт — кВт) к началу XIX века тоже активно входил в оборот, пришлось две величины как-то приводить друг к другу. Вот здесь-то и возникли ключевые разногласия. Например, в России и большинстве других европейских стран приняли так называемую метрическую лошадиную силу, которая равна 735,49875 Вт или, что сейчас нам более привычно, 1 кВт = 1,36 л.с. Такие «л.с.» чаще всего обозначают PS (от немецкого Pferdestärke), но есть и другие варианты — cv, hk, pk, ks, ch... При этом в Великобритании и ряде её бывших колоний решили пойти своим путём, организовав «имперскую» систему измерений с её фунтами, футами и прочими прелестями, в которой механическая (или, по-другому, индикаторная) лошадиная сила составляла уже 745,69987158227022 Вт. А дальше — пошло-поехало. К примеру, в США придумали даже электрическую (746 Вт) и котловую (9809,5 Вт) лошадиные силы.

Вот и получается, что один и тот же автомобиль с одним и тем же двигателем в разных странах на бумаге может иметь разную мощность. Возьмём, например, популярный у нас кроссовер Kia Sportage — в России или Германии по паспорту его двухлитровый турбодизель в двух вариантах развивает 136 или 184 л.с., а в Англии — 134 и 181 «лошадку». Хотя на самом деле отдача мотора в международных единицах составляет ровно 100 и 135 кВт — причём в любой точке земного шара. Но, согласитесь, звучит непривычно. Да и цифры уже не такие впечатляющие. Поэтому автопроизводители и не спешат переходить на официальную единицу измерения, объясняя это маркетингом и традициями. Это как же? У конкурентов будет 136 сил, а у нас всего 100 каких-то кВт? Нет, так не пойдёт...

КАК ИЗМЕРЯЮТ МОЩНОСТЬ?

Впрочем, «мощностные» хитрости игрой с единицами измерения не ограничиваются. До последнего времени её не только обозначали, но даже измеряли по-разному. В частности, в Америке долгое время (до начала 1970-х годов) автопроизводители практиковали стендовые испытания двигателей, раздетых догола — без навески вроде генератора, компрессора кондиционера, насоса системы охлаждения и с прямоточной трубой вместо многочисленных глушителей. Само собой, сбросивший оковы мотор легко выдавал процентов на 10-20 больше «л.с.», так необходимых менеджерам по продажам. Ведь в тонкости методики испытаний мало кто из покупателей вдавался.

Другая крайность (но гораздо более приближенная к реальности) — снятие показателей прямо с колёс автомобиля, на беговых барабанах. Так поступают гоночные команды, тюнинговые мастерские и прочие коллективы, которым важно знать отдачу мотора с учётом всех возможных потерь, и трансмиссионных в том числе.

Мощность также зависит от того, как её измерять. Одно дело крутить на стенде «голый» мотор без навесного оборудования и совсем другое — снимать показания с колёс, на беговых барабанах, с учётом трансмиссионных потерь. Современные методики предлагают компромиссный вариант — стендовые испытания двигателя с необходимой для его автономной работы навеской

Но в итоге за образец в различных методиках вроде европейских ECE, DIN или американских SAE приняли компромиссный вариант. Когда двигатель устанавливают на стенде, но со всей необходимой для бесперебойного функционирования навеской, включая стандартный выпускной тракт. Снять можно только оборудование, относящееся к другим системам машины (к примеру, компрессор пневмоподвески или насос гидроусилителя руля). То есть тестируют мотор ровно в том виде, в котором он фактически стоит под капотом автомобиля. Это позволяет исключить из финального результата «качество» трансмиссии и определить мощность на коленвале с учётом потерь на привод основных навесных агрегатов. Так, если говорить о Европе, то эту процедуру регламентирует директива 80/1269/EEC, впервые принятая ещё в 1980 году и с тех пор регулярно обновляемая.

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ?

Но если мощность, как говорят в Америке, помогает автомобили продавать, то двигает их вперёд крутящий момент. Измеряют его в ньютон-метрах (Н∙м), однако у большинства водителей до сих пор нет чёткого представления об этой характеристике мотора. В лучшем случае обыватели знают одно — чем выше крутящий момент, тем лучше. Почти как с мощностью, не правда ли? Вот только чем тогда «Н∙м» отличаются от «л.с.».?

На самом деле, это связанные величины. Более того, мощность — производная от крутящего момента и оборотов мотора. И рассматривать их по отдельности просто нельзя. Знайте — чтобы получить мощность в ваттах необходимо крутящий момент в ньютон-метрах умножить на текущее число оборотов коленвала и коэффициент 0,1047. Хотите привычные лошадиные силы? Нет проблем! Делите результат на 1000 (таким образом получатся киловатты) и умножайте на коэффициент 1,36.

Чтобы обеспечить дизелю (на фото слева) высокую степень сжатия, инженеры вынуждены делать его длинноходным (это когда ход поршня превышает диаметр цилиндра). Поэтому у таких моторов крутящий момент конструктивно получается большим, но предельное число оборотов приходится ограничивать ради повышения ресурса. Разработчикам бензиновых агрегатов, наоборот, проще получить высокую мощность — детали здесь не такие массивные, степень сжатия меньше, так что двигатель можно сделать короткоходным и высокооборотным. Впрочем, в последнее время различие между дизелями и бензиновыми агрегатами постепенно стирается — они становятся всё более похожими как по конструкции, так и по характеристикам

Выражаясь техническим языком, мощность показывает, сколько работы способен выполнить мотор за единицу времени. А вот крутящий момент характеризует потенциал двигателя к совершению этой самой работы. Показывает сопротивление, которое он может преодолеть. Например, если машина упрётся колёсами в высокий бордюр и не сможет тронуться с места, мощность будет нулевой, так как никакой работы мотор не совершает — движения нет, но крутящий момент при этом развивается. Ведь за то мгновение, пока движок не заглохнет от натуги, в цилиндрах сгорает рабочая смесь, газы давят на поршни, а шатуны стараются привести во вращение коленвал. Иными словами, момент без мощности существовать может, а мощность без момента — нет. То есть именно «Н∙м» являются основной «продукцией» двигателя, которую он производит, превращая тепловую энергию в механическую.

Если проводить аналогии с человеком, «Н∙м» отражают его силу, а «л.с.» — выносливость. Именно поэтому тихоходные дизельные двигатели в силу своих конструктивных особенностей у нас, как правило, тяжелоатлеты — при прочих равных условиях они могут тащить на себе больше и легче преодолевают сопротивление на колёсах, пусть и не так проворно. А вот быстроходные бензиновые моторы скорее относятся к бегунам — нагрузку держат хуже, зато перемещаются быстрее. В общем, действует простое правило рычага — выигрываем в силе, проигрываем в расстоянии или скорости. И наоборот.

Так называемая внешняя скоростная характеристика двигателя отражает зависимость мощности и крутящего момента от оборотов коленвала при полностью открытом дросселе. По идее, чем раньше наступает пик тяги и позже — мощности, тем проще мотору адаптироваться к нагрузкам, его рабочий диапазон увеличивается, что позволяет водителю или электронике реже переключать передачи и почём зря не жечь топливо. На этих графиках видно, что бензиновый двухлитровый турбомотор (справа) выигрывает по этому показателю у турбодизеля аналогичного объёма, но уступает ему в абсолютной величине крутящего момента

Как это выражается на практике? В первую очередь, надо понять, что именно кривые крутящего момента и мощности (вместе, а не по отдельности!) на так называемой внешней скоростной характеристике двигателя будут раскрывать его истинные возможности. Чем раньше достигается пик тяги и позже пик мощности, тем лучше мотор приспособлен к своим задачам. Возьмём простой пример — автомобиль движется по ровной дороге и вдруг начинается подъём. Сопротивление на колёсах возрастает, так что при неизменной подаче топлива обороты станут падать. Но если характеристика двигателя грамотная, крутящий момент при этом наоборот начнёт расти. То есть мотор сам приспособится к увеличению нагрузки и не потребует от водителя или электроники перейти на передачу пониже. Перевал пройден, начинается спуск. Машина пошла на разгон — высокая тяга здесь уже не так важна, критичным становится другой фактор — мотор должен успевать её вырабатывать. То есть на первый план выходит мощность. Которую можно регулировать не только передаточными числами в трансмиссии, а повышением оборотов двигателя.

Здесь уместно вспомнить гоночные автомобильные или мотоциклетные моторы. В силу относительно небольших рабочих объёмов, они не могут развить рекордный крутящий момент, зато способность раскручиваться до 15 тысяч об/мин и выше позволяет им выдавать фантастическую мощность. К примеру, если условный двигатель при 4000 об/мин обеспечивает 250 Н∙м и, соответственно, примерно 143 л.с., то при 18000 об/мин он мог бы выдать уже 640,76 л.с. Впечатляет, не правда ли? Другое дело, что «гражданскими» технологиями это не всегда получается добиться.

И, кстати, в этом плане близкую к идеальной характеристику имеют электродвигатели. Они развивают максимальные «ньютон-метры» прямо со старта, а потом кривая крутящего момента плавно падает с ростом оборотов. График мощности при этом прогрессивно возрастает.

Современные моторы «Формулы 1» имеют скромный объём 1,6 л и относительно невысокий крутящий момент. Но за счёт турбонаддува, а главное — способности раскручиваться до 15000 об/мин, выдают порядка 600 л.с. Кроме того, инженеры грамотно интегрировали в силовой агрегат электродвигатель, который в определённых режимах может добавлять ещё 160 «лошадок». Так что гибридные технологии могут работать не только на экономичность

Думаю, вы уже поняли — в характеристиках автомобиля важны не только максимальные значения мощности и крутящего момента, но и их зависимость от оборотов. Вот почему журналисты так любят повторять слово «полка» — когда, допустим, мотор выдаёт пик тяги не в одной точке, а в диапазоне от 1500 до 4500 об/мин. Ведь если есть запас крутящего момента, мощности тоже, скорее всего, будет хватать.

Но всё же лучший показатель «качества» (назовём его так) отдачи автомобильного двигателя — его эластичность, то есть способность набирать обороты под нагрузкой. Она выражается, например, в разгоне от 60 до 100 км/ч на четвёртой передаче или с 80 до 120 км/ч на пятой — это стандартные тесты в автомобильной индустрии. И может случиться так, что какой-нибудь современный турбомотор с высокой тягой на малых оборотах и широченной полкой момента даёт ощущение отличной динамики в городе, но на трассе при обгоне окажется хуже древнего атмосферника с более выгодной характеристикой не только момента, но и мощности...

Так что пусть в последнее время разница между дизельными и бензиновыми агрегатами становится всё более расплывчатой, пусть развиваются альтернативные моторы, но извечный союз мощности, крутящего момента и оборотов двигателя останется актуальным. Всегда.

auto.mail.ru

Что Такое Крутящий Момент Автомобиля. Что Мы Выбираем? Наше Авто. 1km-auto

что такое крутящий момент у автомобиля?

Евгений Кувшинов Ученик (102), закрыт 8 лет назад

Дмитрий Воробьев Знаток (390) 8 лет назад

АКСИОМА первая: чем больше запас крутящего момента, тем тяговитее мотор. Аксиома вторая: чем больше объем двигателя, тем больше запас крутящего момента. К примеру, автомобиль легко катится на пятой или четвертой передаче, однако начинается подъем - и мотор перестает тянуть . Ситуация, хорошо знакомая водителям многих малолитражек. В этом случае вы привычно втыкаете более низкую передачу, и машина, словно обретя второе дыхание, устремляется вперед. Что произошло? Переключившись, вы заставили двигатель искусственно поддерживать высокие обороты, компенсируя нехватку. чего? Правильно - крутящего момента. Который, говоря формально, есть величина, характеризующая скорость набора оборотов мотором.

Даже младшеклассникам известно, что мощность двигателя измеряется в лошадиных силах . Но если у вас, допустим, 100-сильный автомобиль, это отнюдь не значит, что вся сотня лошадок в любой момент к вашим услугам. Нет, их совокупная мощь в полной мере проявляется лишь при максимальном количестве оборотов мотора, которое в среднем составляет 5.000-6.500 об/мин. Приглядитесь к шкале тахометра. При обычной езде в потоке других машин стрелка редко забирается за отметку 2.000-3.000 об/мин. То есть на средних оборотах вас везет не весь табун , а лишь половина - примерно 40-50 лошадей .

Вы прибавляете газу, желая, допустим, обогнать медлительного соседа. Все 100 сил сразу вступят в действие? Как бы не так! Та же стрелка тахометра покажет, какими темпами пополняется ваш табун . Вот мотор раскрутился до 4.000 оборотов - машину тянут уже не полсотни, а примерно 70 лошадок . 5000 об/мин - под капотом цокают копытами около 90 жеребцов . Наконец достигнута предельная величина, скажем, 6000 об/мин, - и лишь теперь в вашем распорежении поступают все 100 сил, обещающих производителем.

Именно крутящий момент исполняет роль табунщика, добавляя к упряжке все новых лошадей и помогая автомобилю разогнаться. Чем он больше - тем скорее мотор набирает обороты, тем оперативнее включается в работу вся его сила, а значит, тем эффективнее ускоряется ваша машина.

Величина крутящего момента измеряется в ньютон-метрах (Нм). Например, двигатели автомобилей объемом до двух литров обычно выдают 100-150 Нм. Не слишком много - поэтому, как мы уже говорили, при обгонах и на горках частенько надо переключаться на более низкую передачу. 200 Нм - показатель уже вполне достойный. А. уж если мотор, допустим, восьмилитровый, тогда крутящий момент может достигать невообразимых шести-семи сотен ньютон-метров.

Еще очень большую роль играет, при каком числе оборотов двигатель выдает максимум крутящего момента. Вы не слышали выражение вроде того, что эта машина подхватывает ?

Смысл его в том, что максимальный крутящий момент достигается при сравнительно низких оборотах. Предположим, в какой-то клаксо-новской статье читаете: Максимальный крутящий момент мотор выдает при 1.750 об/мин . Это очень хорошо. Значит, двигатель тя-говитый . При старте от светофора такой автомобиль легко обойдет соседа, у которого максимум достигается, скажем, при 4.000 об/мин. И с обгонами проблем не возникнет - ведь при нормальной езде мы ускоряемся, повторим, с 2.000-3.000 об/мин. А если на таких оборотах выдается максимум момента, то двигателю не требуется время на раскрутку: вы просто утапливаете педаль акселератора - и машина мгновенно выстреливает вперед.

Способностью катапультировать автомобиль с места наделены двигатели многоцилиндровые, с наддувом и турбонаддувом. Рекордсмены по крутящему моменту -дизели. Лучшие среди них обеспечивают эффективный разгон уже с 700-800 об/мин. Проще говоря, они имеют немалый запас крутящего момента даже на холостых оборотах.

Остальные ответы

Крутящий момент, что это и зачем он нужен?

Каждый двигатель внутреннего сгорания рассчитан на определенную максимальную мощность, которую он может выдавать при наборе определенного количества оборотов коленчатого вала. Однако помимо максимальной мощности существует еще и такая величина в характеристике двигателя, как максимальный крутящий момент, достигаемый на оборотах отличных от оборотов максимальной мощности.

Что же означает понятие крутящий момент?

Говоря научным языком, крутящий момент равен произведению силы на плечо ее применения и измеряется в ньютон — метрах. Значит если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.

Для наглядности. Если гайка затянута с усилием 3 кгс, то для ее откручивания придется к ключу с длиной плеча в 1 метр приложить усилие 3 кг. Однако, если на ключ длиной 1 метр надеть дополнительно 2-х метровый отрезок трубы, увеличив тем самым рычаг до 3 метров, то тогда для отворачивания этой гайки потребуется лишь усилие в 1 кг. Так поступают многие автолюбители при откручивании колесных болтов: либо добавляют отрезок трубы, а за неимением такового просто надавливают на ключ ногой, увеличив тем самым силу приложения к баллонному ключу.

Так же если на рычаг метровой длины повесить груз равный 10 кг, то появится крутящий момент равный 10 кгм. В системе СИ это значение (перемножается на ускорение свободного падения — 9,81 м/см2) будет соответствовать 98,1 Нм.

Результат всегда един — крутящий момент, это произведение силы на длину рычага, стало быть, нужен либо длиннее рычаг, либо большее количество прикладываемой силы.

Все это хорошо, но для чего нужен крутящий момент в автомобиле и как его величина влияет на его поведение на дороге?

Мощность двигателя лишь косвенно отражает тяговые возможности мотора, и ее максимальное значение проявляется, как правило, на максимальных оборотах двигателя. В реальной жизни в таких режимах практически никто не ездит, а вот ускорение двигателю требуется всегда и желательно с момента нажатия на педаль газа. На практике одни автомобили уже с низких оборотов (с низов) ведут себя достаточно резво, другие напротив предпочитают лишь высокие обороты, а на низах показывают вялую динамику.

Так у многих возникает масса вопросов, когда они с авто с бензиновым мотором мощностью 105-120 л.с. пересаживаются на 70-80 – сильный дизель, то последний с легкостью обходит машину с бензиновым мотором. Как такое может быть?

Связано это с величиной тяги на ведущих колесах, которая различна для этих двух автомобилей. Величина тяги напрямую зависит от произведения таких показателей как, величины крутящего момента, передаточного числа трансмиссии, ее КПД и радиуса качения колеса.

Как создается крутящий момент в двигателе

В двигателе нет метровых рычагов и грузов, и их заменяет кривошипно-шатунный механизм с поршнями. Крутящий момент в двигателе образуется за счет сгорания топливо — воздушной смеси, которая расширяясь в объеме с усилием толкает поршень вниз. Поршень в свою очередь через шатун передает давление на шейку коленчатого вала. В характеристике двигателя нет значения плеча, но есть величина хода поршня (двойное значение радиуса кривошипа коленвала).

Для любого мотора крутящий момент рассчитывается следующим образом. Когда поршень с усилием 200 кг двигает шатун на плечо 5 см, появляется крутящий момент 10 кГс или 98,1Нм. В данном случает для увеличения крутящего момента нужно либо увеличить радиус кривошипа, или же увеличить давление расширяющихся газов на поршень.

До определенной величины можно увеличить радиус кривошипа, но будут расти и размеры блока цилиндров как в ширину, так и в высоту и увеличивать радиус до бесконечности невозможно. Да и конструкцию двигателя придется значительно упрочнять, так как будут нарастать силы инерции и другие отрицательные факторы. Следовательно, у разработчиков моторов остался второй вариант – нарастить силу, с которой поршень передает усилие для прокручивания коленвала. Для этих целей в камере сгорания нужно сжечь больше горючей смеси и к тому же более качественно. Для этого меняют величину и конфигурацию камеры сгорания, делают «вытеснители» на головках поршней и повышают степень сжатия.

Однако максимальный крутящий момент доступен не на всех оборотах мотора и у различных двигателей пик момента достигается на различных режимах. Одни моторы выдают его в диапазоне 1800- 3000 об/мин, другие на 3000-4500 об/мин. Это зависит от конструкции впускного коллектора и фаз газораспределения, когда эффективное наполнение цилиндров рабочей смесью происходит при определенных оборотах.

Наиболее простое решение для увеличения крутящего момента, а следовательно и тяги, это применение турбо или механического наддува, либо применение их в комплексе. Тогда кртящий момент можно уже использовать с 800-1000 об/мин, т.е. практически сразу при нажатие на педаль акселератора. К тому же это закрывает такую проблему. как провалы при наборе скорости, так как величина крутящего момента становится практически одинакова во всем диапазоне оборотов двигателя. Достигается это различными путями. увеличивают количество клапанов на цилиндр, делают управляемыми фазы газораспределения для оптимизации сгорания топлива, повышают степень сжатия, применяют выпускной коллектор по формуле 1-4 -2-3, в турбинах применяют крыльчатки с изменяемым и регулируемым углом атаки лопаток и т.д.

Что такое крутящий момент двигателя?

Многие автолюбители часто слышали такое словосочетание, как крутящий момент двигателя, но не каждый сможет своими словами, хотя бы в общем, объяснить, что такое крутящий момент (он, к слову, измеряется в ньютон-метрах), а также, что лучше, его низкие показатели или высокие. Поэтому данному вопросу я решил посвятить эту статью.

Итак, от самого двигателя зависит, какой у него будет крутящий момент. В паспорт к любому автомобилю всегда вписывают цифры, означающие его предельную скорость, которую может развить автомобиль за счет так называемых лошадиных сил. Наверное, каждый наблюдал интересную вещь, когда в паспорте авто забита скорость сто километров в час, а автомобиль без особых проблем разгонялся до семидесяти километров в час, после чего стрелка спидометра словно набирая вес тяжелеет и ей все труднее дается подъем вверх. Также, наверное, стараясь выжимать максимум из двигателя, замечали, что он отдает всю свою мощь лишь на определенных оборотах. Из этого следует, что чем больше оборотов им продуцируется, тем больший силовой запас появляется у него. Или другими словами, если автомобиль имеет максимум 5 – 6 тысяч оборотов в минуту, то педаль газа тяжело будет вдавить в пол, имея нормальный запас. В итоге получается, что чем большая скорость вам нужна, тем дольше двигатель будет собирать необходимые для этого «лошадиные силы».

Именно теперь крутящий момент и включается в работу. Чем больше показатель автомобиля в ньютон-метрах, тем резвее будут увеличиваться обороты и тем быстрее мощь всех «лошадок» автомобиля будет собираться под педалью газа.

Давайте теперь посмотрим, почему автомобиль с хорошим крутящим моментом сложно разогнать. Все просто, дело оказывается в том, что каждый двигатель имеет показатель, называемый максимальным выдаваемым крутящим моментам. Проще говоря, для того, чтобы включился максимальный крутящий момент или, как говорят, второе дыхание, необходимо двигатель разогнать до предельного количества оборотов. Затем, добавив газа, водитель с легкостью заставит автомобиль мчать стремительнее. Следовательно, можно сделать вывод, что чем больше крутящий момент вашего авто, и чем меньше число максимальных оборотов при допустимом пределе, тем быстрее и «живее» будет происходить езда на этом автомобиле.

Итак, мы рассмотрели, что такое крутящий момент. И в заключение хотелось бы добавить, от чего же он зависит. А зависит он от объема двигателя или литража. Здесь надеюсь все ясно: чем больше литров, тем стремительнее происходит разгон автомобиля и наоборот.

Крутящий момент двигателя

Крутящий момент двигателя – это тяговая характеристика двигателя, которая в отличие от мощности дает весьма отдаленное представление об истинных возможностях автомобиля. Для того чтобы наиболее полно ответить на вопрос: «Крутящий момент что это?», необходимо, прежде всего, уяснить, что момент двигателя и момент на колесах автомобиля – это две большие разницы. Крутящий момент двигателя, будучи величиной, равной силе на плечо (Н*м) – сила давления сгоревших в двигателе газов через поршень и шатун на плечо кривошипа коленвала, показывает лишь потенциал мотора, а сам автомобиль, в конечном итоге, движет крутящий момент на колесах.

График крутящего момента

Пример №1. Суперкар мощностью 500 сил с крутящим моментом двигателя 500 Н*м и магистральная фура-тягач с отдачей 500 сил и 2500 Н*м, на колесах, тем не менее, имеют абсолютно равный крутящий момент при движении с одинаковой скоростью на оборотах максимальной мощности: М (момент на колесах, приводящий машины в движение) = N (мощность двигателя) / n (обороты колеса, при условии, что у суперкара и фуры они одинакового диаметра).

Вывод: цифра мощности отражает тягу и динамику автомобиля, а цифра крутящего момента двигателя, не учавствующая в вычислениях, может быть любой и не имеет значения.

Пример №2. Зайдем с другой стороны. Тот же суперкар и фура с вышеуказанными характеристиками (аналоги Porsche 911 GT3 RS 4.0. Scania R500 и многие другие суперкары и грузовики), как правило, имеют максимальные обороты двигателя около 9000 и 1800 соответственно. Для того чтобы компенсировать пятикратную разницу в оборотах (иметь ту же скорость движения), на фуре придется применять в пять раз более «длинную » трансмиссию, которая, соответственно, будет передавать в 5 раз меньше момента на колеса: 2500 Н*м делим на 5 и получаем те же 500 Н*м (приведенный момент), как в суперкаре.

Вывод: мы получили то же равенство тягово-динамического потенциала машин равной мощности, что и в примере №1.

В представленной таблице крутящего момента двигателей, цифры Нм приведены к величине 7000 об/мин.

Таблица крутящего момента и мощности

Обновления сайта

29.07.

Обновление автокаталога. Добавлены характеристики автомобилей - года выпуска (более 1000 моделей и модификаций). 01.04-5.

На сайт добавлена Доска бесплатных автомобильных объявлений . 12.04.

В таблицу сравнения добавлены характеристики автомобилей Acura, Infiniti, Lexus года выпуска.

05.01.

Исправлены характеристики автомобилей ГАЗ . Добавлены новые характеристики. 20.12.

В таблицу сравнения добавлены характеристики автомобилей Audi, BMW, Citroen, Dacia, Fiat, Honda, Infiniti, Mercedes-Benz, Nissan, Opel, Seat, Volkswagen 2010- года выпуска. 22.08.

Редизайн сайта. 05.08.

В таблицу сравнения добавлены характеристики Китайских аватомобилей Brilliance, BYD, Chery, FAW, Great Wall 2004- года выпуска. 06.07.

Добавлена статья Краш тесты и рейтинг безопасности автомобилей. и раздел Рейтинг безопасности в Таблицу сравнения характеристик автомобилей . 03.06.

В таблицу сравнения добавлены характеристики моделей Aston Martin, Land Rover, Jaguar, Mini, Acura, Infiniti, Jeep, Lexus и другие модели Английских и Американских авто производителей 2006- года выпуска. 22.05.

Добавлена статья Рейтинг надежности автомобилей. и раздел Рейтинг TUV в Таблицу сравнения характеристик автомобилей . 18.05.

Редизайн сайта. 06.05.

В таблицу сравнения добавлены характеристики моделей Honda, Mazda, Mitsubishi, Nissan, Subaru, Suizuki, Toyota 2009- года выпуска. 22.04.

В таблицу сравнения добавлены характеристики моделей Fiat, Ford, Kia, Hyundai 2009- года выпуска. 06.03.

В таблицу сравнения добавлены характеристики моделей Citroen, Peugeot, Renault 2009- года выпуска. 21.02.

Устранены недоработки в таблице сравнения характеристик автомобилей. Обновлены ссылки на скачивание. 02.02.

В таблицу сравнения добавлены характеристики моделей Audi, BMW, M-B, Opel, VW, 2010- года выпуска. 14.01.

Добавлена статья Выбор масла и раздел Масло в таблицу сравнения характеристик. 10.12.2010

Создание сайта.

Крутящий момент двигателя автомобиля.

Крутящий момент двигателя автомобиля, отображаемый в Таблице сравнения основных характеристик автомобилей , которую можно скачать бесплатно . принято считать одной из основных характеристик силового агрегата.

Чтобы понять, что такое крутящий момент двигателя автомобиля и чем он генерируется, необходимо рассмотреть процесс возникновения и взаимодействия сил действующих на поршни в двигателе внутреннего сгорания.

Образование крутящего момента.

Наведя курсор мышки на рисунок рис.1 можно увидеть как работает бензиновый двигатель на примере работы одного цилиндра. Весь рабочий цикл протекает в течение двух полных оборотов коленвала и состоит из 4-х тактов, каждый из которых занимает половину оборота:

  1. Такт впуска, в процессе которого в цилиндр подаётся топливо смешанное с воздухом.
  2. Такт сжатия поступившей топливовоздушной смеси.
  3. Такт работы или рабочий ход, в течение которого создаётся крутящий момент.
  4. Такт выпуска, основная задача которого освободить цилиндр от продуктов сгорания и выхлопных газов и, тем самым, подготовить цилиндр для принятия очередной порции топливовоздушной смеси.

Поскольку нас интересует именно крутящий момент, то рассматривать мы будем только такт рабочего хода поршня и то, что происходит в цилиндре в этот момент.

И так, топливовоздушная смесь воспламенившись нагревает рабочее тело. заставляя его резко расшириться, что приводит к созданию силы F₁. которая начинает двигать поршень вниз. Усилие через поршень и шатун передаётся на шатунную шейку, смещенную относительно оси вращения коленвала на величину R. Эта величина называется плечом коленвала, равна половине хода поршня и является постоянной. Все двигатели внутреннего сгорания сконструированы таким образом, что самостоятельно могут работать только на холостых оборотах. Для того, чтобы увеличить обороты необходимо с помощью педали газа увеличить подачу топливовоздушной смеси в цилиндр. Это приведёт к увеличению силы F₁. что повлечёт за собой увеличение скорости поршня и, как следствие, увеличение числа оборотов.

В физике крутящий момент или момент силы определяется как произведение силы на плечо и выражается формулой:

где: F #8212 постоянно действующая сила. R #8212 плечо к которому она приложена под углом 90°.

Взглянув на рисунок можно увидеть, что рассчитать по этой формуле крутящий момент двигателя весьма сложно, если не невозможно, по следующим причинам:

  • Сила F₁ не является постоянной, так как при движении поршня вниз объём цилиндра увеличивается, что приводит к уменьшению силы от какого-то максимального значения до 0. Так же уменьшению силы способствует быстрое падение температуры рабочего тела из-за наличия системы охлаждения цилиндра.
  • В точке приложения действует сила F₂. которая меньше силы F₁ из-за потерь на трение в местах контакта сопряженных деталей (поршневых колец и стенок цилиндра, поршня и шатуна, шатунных вкладышей и коленвала).
  • Сила F₂ приложена к плечу R не под прямым углом, который является оптимальным для создания крутящего момента, а под изменяемым от 180 до 0 .

Видимо по этим причинам крутящий момент двигателя не рассчитывают, а просто измеряют при различных оборотах. Результаты измерений отображают в виде диаграммы крутящего момента вместе с диаграммой мощности двигателя.

Диаграммы мощности и крутящего момента.

Таких диаграмм в интернете можно найти достаточно большое количество. Рассмотрим одну из них, первую попавшуюся, и попытаемся понять о чем она нам говорит. Пусть это будет стандартная диаграмма мощности и крутящего момента автомобиля BMW 318i (рис.2) .

Сразу обращает на себя внимание тот факт, что диаграмма имеет три шкалы шкалу крутящего момента в ньютонометрах, расположенную слева, шкалу мощности в лошадиных силах расположенную справа и шкалу оборотов в минуту расположенную внизу, кроме того кривая крутящего момента начинается выше кривой мощности и впоследствии пересекает её, чего по идее быть не должно.

Попробуем привести эти диаграммы к какому-то понятному и удобоваримому виду. Прежде всего перейдём от лошадиных сил к киловаттам, так как лошадиная сила является устаревшей внесистемной единицей измерения, не применяемой в физике. Для этого все значения диаграммы мощности необходимо разделить на 1,36.

Более того зная, что 1 киловатт = 1000 ватт, а 1 ватт = 1 ньютонометр в секунду мы имеем возможность перевести значения мощности в нм/с, что вполне сопоставимо со значениями крутящего момента и позволяет нам перейти к единой шкале.

После построения диаграмм по новым шкалам (рис.3) сразу бросается в глаза тот факт, что крутящий момент это десятки и сотни ньютонометров, а мощность - десятки тысяч нютонометров, что на 2 порядка выше и пересекаться они никак не могут. Давайте посмотрим, какую полезную информацию мы можем почерпнуть из этих диаграмм.

Сначала рассмотрим кривую мощности. Необходимо сразу пояснить, что мощность является, по сути, производной крутящего момента и рассчитывается по формуле

где: P - мощность двигателя в ваттах или нм/с.

n - количество оборотов двигателя в минуту.

9,5492 - коэффициент перевода оборотов в минуту - в радианы в секунду, определяемый по Таблице перевода единиц измерения угловой скорости .

Исходя из этой формулы, можно сказать, что мощность это сумма крутящих моментов произведенных в двигателе за единицу времени. С увеличением оборотов мощность двигателя увеличивается, с небольшим замедлением роста в точке В. до точки С (6250 об/мин.), после которой наблюдается резкое падение мощности. Таким образом, диаграмма мощности наглядно демонстрирует, что максимальная мощность достигается при 6250 об/мин и закручивать двигатель выше этих оборотов бессмысленно, а иногда и опасно. Он конструктивно на это не рассчитан.

Теперь перейдём к диаграмме крутящего момента. Тут всё сложнее и интереснее. На начальном этапе до точки А кривая момента растёт синхронно с кривой мощности. Вполне логично предположить, что и дальше эта кривая должна, пусть даже не параллельно кривой мощности, как отмечено пунктирной линией, но все-таки расти.

Однако в реальности мы видим, что на участке от точки А до точки В рост резко замедляется, а после точки В кривая момента начинает, как сказал бы классик, падать вниз стремительным домкратом , что противоречит логике и здравому смыслу. Ведь обороты растут. И растут они потому что увеличивается сила в цилиндре, а следовательно должен увеличиваться и крутящий момент.

На самом деле никакого противоречия нет. И крутящий момент в цилиндре действительно растёт. Но это в цилиндре, а мы имеем дело с кривой построенной по значениям измеренным на выходе из двигателя в целом. Как правило, классический 4-х тактный двигатель имеет не менее 4-х цилиндров. И в то время как в 1-ом цилиндре формируется крутящий момент, во 2-ом цилиндре идет такт выпуска, на что нужно затратить часть крутящего момента созданного в 1-ом цилиндре, в 3-м цилиндре - такт сжатия топливовоздушной смеси, которая не очень желает сжиматься и, наконец, в 4-м такт выпуска - тоже требующий каких-то затрат момента.

Помимо этого существует еще достаточное количество различных внутренних сопротивлений двигателя, на которых мы сейчас останавливаться не будем. Мы рассмотрим их в следующей статье, посвящённой способам повышения мощности и крутящего момента.

Исходя из вышеизложенного можно сказать, что говоря о кривой крутящего момента, мы фактически говорим об остаточном крутящем моменте. который отличается от произведенного на величину суммарных потерь на преодоление сопротивлений внутри двигателя.

Какую же полезную для нас информацию даёт эта кривая?

Диаграмма крутящего момента показывает в каких пределах необходимо поддерживать обороты двигателя для получения наилучшей динамики разгона автомобиля. Видя, что максимум крутящего момента находится в районе 3400-3800 оборотов в минуту нужно понимать, что при достижении 4000-4200 об/мин в процессе разгона автомобиля на 1 передаче следует переключиться на 2 передачу. При этом обороты двигателя упадут примерено до 3000-3200 об/мин. Нажав на педаль газа, мы снова выведем обороты двигатель в район максимального крутящего момента и опять получим максимально динамичный разгон. Ну и так далее, до самой высшей передачи. При падении скорости и оборотов, например на затяжных подъёмах всё обстоит с точностью до наоборот.

Вот такая игра с оборотами в процессе набора или падения скорости, заключающаяся в удержании стрелки тахометра в как можно более узком диапазоне оборотов в районе максимального крутящего момента и является мастерством водителя или гонщика. Поверьте, добиться этого не так легко и просто, как кажется.

Источники: http://otvet.mail.ru/question/1138129, http://smotorom.ru/community/mdk/discussions/view/100/, http://autoepoch.ru/avtoazbuka/chto-takoe-krutyashhij-moment-dvigatelya.html, http://topruscar.ru/terms/krutyashhij-moment, http://www.carlik.com/torque.php

Комментариев пока нет!

www.1km-auto.ru

Крутящий момент двигателя автомобиля

К сожалению, в связи с тем, что при написании статей чаще используются понимания гуманитариев в области автомобилей, а не технарей, с понятиями крутящиймомент и мощность сложились настолько противоположные мнения – диву даёшься. Попробуем исправить эту ситуацию. В первую очередь необходимо выяснить, что такое крутящий момент, а что такое мощность, какой из этих показателей важнее, как они связаны?

Основные понятия крутящего момента двигателя

Разберись в значениях слов и ты избавишься от половины заблуждений.

Главная ошибка практических всех, пишущих на эту тему, — это непонимание, что такое момент, а что такое мощность. Математику легко понять, что такое дифференцирование функции в точке и на промежутке, он знает как они связаны, но что делать тем, кто учился давно, для кого предыдущее предложение звучит как на китайском языке?

ПОСМОТРЕТЬ ВИДЕО

Крутящий момент двигателя автомобиля – это моментальная характеристика, т.е. это точка на линии. Практически величина вне времени, за очень маленький временной интервал, стремящийся к нулю, т.е. момент.

А вот мощность двигателя – это характеристика за некоторый промежуток времени. Мощность — это какое количество работы может выполнить устройство за единицу времени, т.е. это отрезок линии. Сравнивать, например, силу качка, толкающего 150кг, с работой человека, загрузившего вагон в 40 тонн за смену, – по меньшей мере странно.

Мощность и крутящий момент – от чего зависит, что важнее, как они связаны?

Связь между мощностью и крутящим моментом в математическом виде такая:

Общая формула мощности:

motorstory.ru

Мощность и крутящий момент | Тюнинг ателье VC-TUNING

Мощность и крутящий момент…  Эти термины часто вводят в ступор многих посетителей автомобильных форумов. Энцо Феррари однажды сказал: «Лошадиные силы продают автомобиль, крутящий момент выигрывает гонки».

 

Мы не собираемся представлять здесь все уравнения и формулы, позволяющие рассчитать мощность и крутящий момент: объяснить многие вещи в одной статье достаточно трудно. Да это вам и не понадобится, если, конечно, вы не планируете стать крупным специалистам в данной области. Но мы постараемся доступным языком объяснить, как мощность и крутящий момент соотносятся друг с другом и как они влияют на производительность автомобиля.

 

Лошадиная сила

Термин «лошадиная сила» был впервые использован Джеймсом Уаттом, британским изобретателем, чье имя неразрывно связано с созданием парового двигателя. Строго говоря, лошадиная сила – это скорость, с которой может быть выполнена работа. Уатт использовал этот термин для сравнения мощности парового двигателя с мощью рабочей лошадки. Наравне с лошадиными силами сегодня используется и системная единица измерения мощности – ватт (Вт).

1 л.с. = 746 Вт

Эффективная мощность двигателя измеряется на коленчатом валу с помощью динамометра. Производители автомобилей, как правило, используют для ее обозначения термин «пиковая мощность» (максимальная мощность при определенном числе оборотов в минуту).

 

Мощность рассчитывается путем умножения крутящего момента двигателя на число оборотов и последующего деления на 5252. Откуда взялась последняя цифра? Если вы не хотите скучных и путаных объяснений, просто поверьте на слово и запомните эту константу.

                         крутящий момент * угловая скорость (RPM)

мощность =      —————————————————

                                                    5252

Здесь не мешало бы упомянуть о динамометрических роликовых стендах, но из-за большого разнообразия стендовых динамометров, мы опишем основные из них в другой статье. Следует отметить, что существует немало причин, по которым цифры, наблюдаемые при езде по дороге, оказываются ниже полученных на стенде. Автомобиль на стенде неподвижен, а на открытой дороге свой вклад вносят давление воздуха, перепады температуры и многие другие факторы, которые сложно учесть при испытаниях, хотя многие пытаются компенсировать их отсутствие с помощью вентиляторов и т.д.

 

  

Крутящий момент

Крутящий момент – вращательное усилие, которое будет применено к ведущим колесам автомобиля. Крутящий момент можно рассматривать в качестве меры способности двигателя выполнить работу. Единицы измерения крутящего момента – фунт*фут и Ньютон*метр (Нм). Один фунт*фут крутящего момента представляет собой усилие, необходимое для поворота 1-футовой оси, на конце которой прикреплен груз весом 1 фунт. Если на конце 1-футовой оси находится груз весом 200 фунтов, крутящий момент будет составлять 200 фунтов*фут. Очевидно, что чем больше это число, тем больше вращательное усилие на колесах.

1 фунт*фут = 1.36 Н*м

 

 

Однако важно понимать, что по мере увеличения крутящего момента вашего двигателя возрастает вероятность самопроизвольного поворота колес. Это довольно частое явление у мощных переднеприводных (FWD) автомобилей с большим крутящим моментом. Поскольку в данном случае передние колеса задействованы также и в управлении автомобилем, вы можете столкнуться с эффектом, называемым паразитным силовым подруливанием. В принципе проблема «непослушания» приводных колес свойственна не только переднеприводным машинам, а любым мощным автомобилям с большим крутящим моментом. Однако, разделив крутящий момент на все четыре колеса (в случае полноприводных (4WD) автомобилей), вы можете уменьшить этот эффект и больше мощности передать дороге.  Хотя есть еще много факторов (например, размер и структура шин, настройка подвески и ходовой части, передаточные числа), которые могут помочь переднеприводным (FWD) или заднеприводным (RWD) автомобилям эффективно использовать свою мощность.

 

Сравнение мощности и крутящего момента

(Как мощность и крутящий момент влияют на производительность)

Причина недопонимания ряда вопросов автолюбителями кроется в том, что в качестве характеристики двигателя автомобиля производители, как правило, приводят пиковые показатели мощности. Это ведет к путанице, люди пытаются сравнивать производительность автомобиля с его мощностью. «Моя машина имеет большее количество лошадиных сил, поэтому она будет быстрее вашей» – некорректное, но достаточно распространенное сравнение.

Есть много факторов, влияющих на производительность автомобиля, и крутящий момент, безусловно, один из них. Кроме того, и мощность, и крутящий момент будут зависеть от передаточных чисел. И, конечно же, большую роль играет то, как и для чего используется автомобиль.

Если вы когда-либо управляли машиной с высоким крутящим моментом (например, автомобилем с большим объемом двигателя или турбодизелем), вы, вероятно, заметили, что способны с легкостью ускоряться на большинстве передач. Это является результатом того, что имеется достаточно мощности в виде крутящего момента, чтобы автомобиль двигался при более широком диапазоне оборотов. Ускорение прямо пропорционально крутящему моменту, т.е. машина, будет ускоряться в соответствии с кривой крутящего момента.

Однако, если вы используете численно более высокое передаточное отношение для увеличения крутящего момента, вы на самом деле уменьшаете максимальную скорость вращения привода. Это может привести к тому, что автомобиль с высоким крутящим моментом (допустим, 680 НМ) достигнет своего предела уже при 30 км/ч.

При всем этом разговоры о крутящем моменте не просто игра слов. Следует понять, что лошадиная сила – просто другой способ измерения мощности (вспомните приведенное выше уравнение: лошадиная сила – это крутящий момент, умноженный на угловую скорость и деленный на 5252). Однако двигатель может быть рассчитан на более высокие обороты и более высокую мощность и, таким образом, на создание большего крутящего момента.

Из всего вышесказанного следует, что лошадиные силы и крутящий момент связаны друг с другом, однако это не одно и то же. Автомобиль с большим крутящим моментом будет ускоряться иначе, чем автомобиль с большим числом лошадей под капотом, с разными точками переключения передач и диапазонами оборотов в минуту. Автомобили с меньшим крутящим моментом (большим числом лошадиных сил), как правило, набирают больше оборотов, но максимальная мощность достигается только на больших оборотах. Машины с большим крутящим моментом (меньшим числом лошадиных сил) имеют меньшую мощность, но сравнительно более широкий диапазон оборотов. Все очень запутано: вроде бы крутящий момент и лошадиные силы – это одно и то же, но разгоняют машину по-разному. Хорошим автомобилем можно считать тот, что имеет оптимальное соотношение крутящего момента и лошадиных сил и возможность повышения обоих параметров.

Что еще влияет на ускорение

  • Вес автомобиля. Многие ошибочно полагают, что чем больше весит машина, тем больше нужно энергии, чтобы сдвинуть ее с места.
  • Аэродинамика. Снова требуется много энергии, чтобы машина могла преодолевать сопротивление встречным потокам воздуха.
  • Сопротивление качению. Шины и привод (шестерни, приводные валы, оси и т.д.) требуют энергии, чтобы они могли вращаться с контактирующими поверхностями.
  • Шестерни/передачи. Чтобы автомобиль мог разгоняться и ускорятся, он оборудован коробкой передач. Шестеренки в коробке влияют на крутящий момент, передаваемый на ведущие колеса, но они не могут изменить количество лошадиных сил в машине. В коробке передач все начинается с шестерни, которая запускает крутящий момент. Он позволяет ускоряться в относительно умеренном темпе, но избежать быстрых оборотов двигателя. Каждая последующая передача помогает развить скорость. Вот почему автомобиль, например, может разогнаться от 0 до 96 км/час за 5 секунд, но от 0 до 160 км/час разгон уже займет 13 секунд, поскольку ему нужно еще 8 секунд, чтобы набрать добавочную скорость в 64 км/час. При этом важно учитывать кинетическую энергию и аэродинамику (сопротивление ветру).

Динамометр фиксирует хороший крутящий момент не только на низких оборотах, но и во всем диапазоне оборотов. В сочетании с равномерно возрастающей кривой лошадиных сил, такой двигатель дает возможность машине разгоняться и выжимать педаль газа до упора. Хотя, все зависит от привода и комплектации самой машины. Но в целом, он имеет хорошую мощность и динамику.

Хочется надеяться, что после прочтения статьи о лошадиных силах и крутящем моменте вы не будете путать эти два понятия. Главное – запомнить, что машина с очень хорошим разгоном – это та, у которой двигатель может выдавать постоянно высокую мощность, даже на самых больших оборотах. Например, система газораспределительного механизма VVT-i эффективна для небольших двигателей, она помогает оптимизировать мощность на переменных оборотах. На самом деле не столь важно, с большим количеством лошадей ли машина или с высоким крутящим моментом, потому, что есть много других факторов, влияющих на ее характеристики.

УскорениеИ снова не будем вас утомлять скучными техническими терминами, а просто подсчитаем кое-что. Крутящий момент двигателя зависит от шестерней в коробке передач. Он нарастает по мере того, как вы переключаетесь на другую скорость. На автомобиле с низким крутящим моментом, его можно увеличить путем изменения передаточного числа. В результате этого трансмиссия или коэффициент привода изменяют диапазон оборотов двигателя, а также то, как используется крутящий момент (не оценивайте это в процессе). A V8 и Vtec производят крутящий момент разными способами посредством зубчатой передачи. Эти способы зависят от конструкции двигателя.

При всем этом интересно, как уже упоминалось ранее, что, хорошо набирающая скорость машина, имеет хорошую динамику крутящего момента, которая распространяется в самом широком диапазоне оборотов (высокий диапазон оборотов помогает поддерживать максимальный крутящий момент). Чтобы добиться максимума от машины, нужно знать, как выглядит динамика мощности и какие обороты у двигателя на каждой из передач. Также необходимо знать, как меняются обороты двигателя, когда переключается скорость: повышается или понижается передача. Это поможет вам узнать, что такое динамика крутящего момента на каждой отдельной передаче. Автомобиль разгоняется сильнее всего на пике крутящего момента, но стоит вам переключиться, как падают обороты, и ослабевает крутящий момент. Вся фишка в том, чтобы найти на каких оборотах будет хороший крутящий момент на следующей передаче, без потери динамики на текущей. Конечно, многое зависит от авто и его водителя, но есть наиболее общие рекомендации. Итак, если ваша машина производит максимальный крутящий момент на 4000 оборотах, и вы не хотите переключаться на следующую скорость с этой отметки, поскольку думаете, что потеряете сейчас эти ценные обороты и не сможете сохранить такой же крутящий момент на следующей передаче, а соответственно и скорость движения. Общая рекомендация в этом случае – для максимального ускорения переключаться тогда, когда стрелка тахометра ляжет на красную отметку (у некоторых легковых и гоночных авто есть специальные индикаторы).

Обозначение мощности авто в лошадиных силахАмериканские машины

Лошадиные силы (HP Gross)До 1972 года в Америке мощность двигателя автомобиля измерялась в лошадиных силах следующим образом: на стенде испытывался двигатель, который не оснащен воздушным фильтром, системой выхлопа или системой контроля над выбросами, но иногда оснащенный коллектором. В результате показатели максимальной мощности и крутящего момента отражали только теоретические значения, но не демонстрировали реальную мощность двигателя. Таким образом, измерялась общая мощность двигателя.

Лошадиные силы (HP net)После 1972 года в Америке стали измерять полезную мощность двигателя. У полностью укомплектованного и установленного двигателя измерялась мощность на маховике, но при этом не учитывались потери при переключении передачи.

Запомните, что американские автомобили оснащены большими двигателями CU, которые выдают высокий крутящий момент и обеспечивают высокую производительность машины.

Лошадиные силы (bhp)Мощность измеряется в лошадиных силах при помощи динамометра. Замер происходит на испытательном стенде в месте выхода вала из двигателя (коленчатый вал, который соединяется с маховиком). Окончательная цифра получается из крутящего момента, который используется для вычисления мощности в лошадиных силах (bhp).Обратите внимание, что показатель мощности в лошадиных силах PS, принятый в Германии, отличается от обозначения bhp. Многие производители используют значение PS для лошадиных сил BHP.Значения приблизительные:

  • 1 Bhp = 1.005 Hp (net) – (разница не существенная)
  • 1 Bhp = 1.0187 PS
  • 1 PS = 0.986 Hp
  • 1 Hp = 1.01387 PS

Иногда происходит путаница потому, что одни говорят о мощности в лошадиных силах, измеренной динамометром, другие об измерении с учетом потерь, а третьи о способе измерения по колесам WHP.

 

vc-tuning.ru