Тнвд распределительного типа принцип работы: принцип работы, устройство, назначение, конструкция

Содержание

как работает, как ломается, как восстанавливают

Категория: Полезная информация.

Топливный насос высокого давления (ТНВД) — самый сложноустроенный и дорогостоящий элемент топливной системы дизельных двигателей.

Назначение этого узла — подавать топливо под большим давлением в форсунки (или топливную рампу, затем в форсунки), откуда оно затем будет впрыскиваться в цилиндры. Поэтому при возникающих неисправностях с ТНВД владельцу грозят серьёзные проблемы со стабильной работой мотора или тот просто откажется заводиться.

 Принцип работы ТНВД 

Основная задача ТНВД — нагнетать под давлением порядка 500-1400 бар (зависит от конструкции и типа насоса) топливо и подавать его к форсункам, которые открываются в нужный момент и быстро выпускают (распыляют) топливо в цилиндр.

Поддержание высокого давления в системе — другое важнейшее назначение ТНВД, ведь без этого форсунка не сработает и опоздает с распылением горючего до мельчайших частиц, а ведь мгновенное смешивание распыляемого ДТ и воздуха является условием образования однородной топливовоздушной смеси.

Другими словами — гарантирует стабильную и культурную работу дизельного двигателя.

Изначально ТНВД выполнял практически все функции по подаче топлива в цилиндры: создавал давление, нагнетал топливо и распределял его по форсункам. Так действовали насосы рядного и распределительного типа.

Затем появилась система впрыска Common Rail и магистральные ТНВД. В таких современных системах впрыска дизельных ДВС насос высокого давления не распределяет топливо по форсункам, а нагнетает его в топливную магистраль (рампу): металлическую трубку, запаянную с обеих сторон, своеобразный резервуар для хранения горючего. От рампы топливо по трубкам (одна форсунка — один топливопровод к рампе) подводится к электромагнитным / пьезоэлектрическим форсункам.

В системе Common Rail, таким образом, топливо подаётся ко всем форсункам одновременно, из общей магистрали под давлением порядка 1 600 – 1 800 бар.

Конструкция топливной рампы CR такова, что топливо, которое ТНВД в неё нагнетает, не запирается в рампе: излишки отводятся через сливной канал.

Так обеспечивается циркуляция ДТ в системе, но как только электрический клапан форсунки открывается, топливо распыляется в цилиндр. И по-прежнему высокое давление играет важную роль в мгновенном приготовлении топливовоздушной смеси и последующем полном её сгорании.

 Плунжерная пара — главный узел в конструкции ТНВД 

Наиболее распространённый вид ТНВД для систем Common Rail — плунжерный. Основный рабочий элемент такого ТНВД — плунжерная пара: поршень (плунжер) и цилиндр (втулка, стакан).

Подпружиненый плунжер двигается благодаря кулачковому валу внутри втулки, набирая и выталкивая из полости над ним топливо. Высокое давление в системе обеспечивает прецезионное сопряжение: минимальный, точно выверенный зазор в 1-3 мм между плунжером и стаканом.

Часто в один корпус ТНВД устанавливают три плунжера. В полости над плунжером размещаются односторонние клапаны — на впуск и на выпуск топлива. Можно провести аналогию плунжерной пары ТНВД с сердцем, которое перекачивает кровь по организму похожим образом.

Важно. Плунжер во время работы смазывается топливом, которое через него проходит.

Конструкция разных видов плунжерных пар отличается. Встречаются ТНВД с плунжерными парами, где плунжер извлекается из корпуса и меняется в сборе. 

 Основные виды ТНВД 

Существует три типа ТНВД.

Рядные и распределительные относятся к ТНВД предыдущих поколений автомобилей, имеют относительно простую конструкцию, не отличаются повышенной чувствительностью к качеству топлива. Среди недостатков — сравнительно шумная работа и высокие потери на трение, особенно у рядных ТНВД.

В системах впрыска Common Rail используются магистральные насосы. Они способны создавать высокое давление и обеспечивать наиболее эффективный впрыск, но весьма привередливы к качеству топлива и дороги в обслуживании и ремонте.

Рассмотрим особенности разных видов ТНВД подробнее.

Рядные ТНВД применялись на легковых автомобилях, выпущенных до 2000 года.

Это неприхотливые выносливые насосы, которые смазываются моторным маслом. Количество плунжеров равно количеству цилиндров, топливо подаётся по принципу каждой камере сгорания — свой плунжер. К недостаткам относятся большие потери на внутреннее трение и недостаточно высокое давление для эффективного распыления топлива.

Распределительные ТНВД устанавливаются на дизельные двигатели с количеством цилиндров от трёх до шести. В отличие от рядных насосов, в конструкции распределительных есть только один или два плунжера, и они обеспечивают одинаковое давление при подаче топлива для всех цилиндров. Это более лёгкие компактные насосы. Работают экономичнее, культурнее и мощнее, чем рядные ТНВД. Недостаток — выше требовательность к качеству топлива.

Магистральный насос — самый современный тип ТНВД для систем впрыска Common Rail. Такой насос содержит до трёх плунжеров, а в современных типах — часто только один. Существуют магистральные насосы и роторного типа. Магистральные ТНВД созданы с высокой точностью. Они ещё легче, компактнее, имеют минимальные потери на трение, создают высокое давление и. Но плунжеры таких ТНВД смазываются топливом, поэтому насосы крайне привередливы к качеству ДТ.

 Признаки неисправности ТНВД 

Владельца должны насторожить такие признаки неисправностей в работе дизельного двигателя, как:

  • неуверенный запуск;
  • падение мощности;
  • увеличение расхода топлива;
  • дымный выхлоп.

В этих случаях очень рекомендуется провести комплексную компьютерную диагностику двигателя и проконтролировать параметры наддува, подачи топлива, давления в топливной системе. А также параметры работы датчиков (в частности, расходомера, датчиков положения распредвала / коленвала), системы EGR и вихревых заслонок впускного коллектора.

Такое пристальное изучение всех параметров работы мотора связано с тем, что дизельная топливная аппаратура — это не только форсунки и ТНВД, но и ряд вспомогательных и контролирующих систем.

Бывает, проблема, которую ищут в неполадках с ТНВД, кроется в другом. Например, имеет место:

  • поломка подкачивающего насоса;
  • грязный топливозаборник в баке;
  • выход из строя насоса, перекачивающего топливо из одной части бака в другую;
  • изношенный регулятор низкого давления;
  • форсунка, льющая топливо в «обратку».

 Внутренние поломки ТНВД и их причины 

Из-за чего топливный насос высокого давления действительно может выйти из строя раньше времени — так это из-за некачественного топлива. Точнее из-за примесей в составе и попадания воды.

Примеси в составе топлива — смолы, парафины, механические взвеси, сомнительные присадки — ухудшают смазывающие свойства ДТ, что вызывает отложение на подвижных частях насоса.

Вода в случае попадания на подвижные элементы ТНВД (вместе с конденсатом с пустых стенок топливного бака или в составе некачественного ДТ), вызовет коррозию деталей. Плунжер и односторонние клапаны начнут подклинивать, нормальная циркуляция топлива нарушится, износ втулок и сальников ускорится в разы. В результате медленно, но верно, ТНВД выйдет из строя.

Если в топливной системе образовалась воздушная пробка, плунжер будет какое-то время работать без смазывания топливом, «на сухую». Механические детали от трения будут истираться друг об друга, а повышенная температура способна быстро деформировать элемент.  Работа ТНВД без смазки способна убить узел в считанные минуты.

К другим, не столько фатальным, поломкам ТНВД относят:

  • износ втулок вала в передней крышке корпуса;
  • износ сальника вала;
  • повреждение уплотнительных колец крышек корпуса / фланца;
  • выход из строя регулятора давления (механической или электрической его части).

 Как диагностируют и ремонтируют ТНВД 

Решение сэкономить на своевременном обращении к специалистам по ремонту и обслуживанию дизельной топливной системы, «поездить пока так», обратиться к знакомым гаражникам — всё это в случае поломки ТНВД выйдет боком и сильно ударит по бюджету.

Топливный насос, точнее, его плунжерная пара — действительно дорогостоящий элемент, и не всегда его можно восстановить. Что уж говорить о самостоятельной переборке системы. Тем более что конструкция отдельных ТНВД просто неразборная.

Важно. Мастера, работающие с дизельной топливной аппаратурой, говорят, что на самом деле среди систем Common Rail «больных» ТНВД мало, чаще проблема кроется в клапане ZME, регуляторе (DRV, PCV…) высокого давления и других сопутствующих элементах. Даже если формально насос в своей работе выходит за параметры диагностического стенда, но работает нормально — нужно дважды подумать, прежде чем вскрывать его и ремонтировать.

Ремонту ТНВД обязательно должна предшествовать компьютерная диагностика, а также стендовая проверка работы форсунок. Если подтверждается, что в неполадках с работой двигателя виноват насос высокого давления, его снимают и отправляют на диагностический стенд, чтобы проверить работу узла в разных режимах «работы двигателя».

Обычно на этом этапе становится понятно, в чём проблема, каков масштаб бедствия и какие варианты исправления ситуации можно предложить владельцу.

Например, если ТНВД «приговорила» коррозия, можно попробовать его разработать (до очередного подклинивания плунжера), но лучше заменить в сборе, купив новую плунжерную пару. 

Замена клапанов на новые тоже не представляет труда в случае такой необходимости. Меняют и уплотнительные кольца, и ремкомплекты.

Важно понимать, что возможность ремонта и замены отдельных элементов связана с особенностями конструкции ТНВД. В современных насосах не предусмотрены процедуры шлифовки или расточки деталей, максимум — можно заменить плунжерную пару. А в самых современных насосах системы CR и это невозможно: случись что, придётся менять весь корпус ТНВД. То есть чем моложе автомобиль, тем выше вероятность в случае поломки заменить весь узел целиком.

После проведённого ремонта и замены изношенных деталей мастер отправляет ТНВД на диагностический стенд снова. Если параметры работы выйдут за предел нормативных, насос снова разбирают, ремонтируют, проверяют.

Полностью исправный ТНВД герметично запаковывают, чтобы исключить попадание воды, и возвращают владельцу. Осталось только установить на двигатель.

Итого

Когда кого-то отговаривают от владения дизельным автомобилем, в основном аргументы «почему не стоит» сводятся как раз к дорогостоящей дизельной аппаратуре. Если речь о подержанном авто с большими пробегами, выход из строя ТНВД повлечёт за собой расходы, к которым готов не всякий автовладелец.

Чтобы не столкнуться с подобной ситуацией, не рискуйте с «паленым» топливом, не используйте присадки и добавки для чего бы то ни было, которые добавляются в бак, особенно если на автомобиле Common Rail. Держите бак по возможности полным, а при первых же признаках неисправностей в подаче топлива обращайтесь к квалифицированным специалистам.

Все эти простые меры позволят поддержать работоспособность ТНВД на нормальном уровне годами.

О том, как устроены дизельные топливные форсунки, почему они ломаются и как их ремонтируют, узнаете из этой статьи.

ТНВД найдёте в нашем каталоге

Посмотреть запчасти в наличии

Метки: Топливная аппаратура, Неисправности топливной системы, Форсунки, ТНВД

ТНВД (топливный насос высокого давления)

Топливный насос высокого давления или, как часто можно встретить в специализированной литературе и сети интернет, ТНВД, — один из важных и достаточно сложных узлов, как всех дизельных двигателей, так и еще пока малой части бензиновых моторов  — тех из них, в которых осуществляется прямой впуск топлива в камеру сгорания.

Устройство, принцип работы и виды.

Из названия данного узла можно понять, что его основная задача состоит в том, чтобы подавать в движок топливо под высоким давлением (если представляете работу дизельного двигателя, то в нем топливо через форсунку подается этим давлением непосредственно в камеру сгорания, где в данный момент находиться сжатый воздух).

Виды ТНВД.

В силу этой своей задачи топливный насос высокого давления является достаточно сложным механизмом. При этом само конструкционное исполнение ТНВД делится на насколько видов:

  • рядного типа,
  • распределительного типа,
  • магистрального типа.

В чем их отличия?

Два первых типа по своей конструкции очень схожи.

Топливный насос высокого давления рядного типа (фото).

Топливный насос высокого давления распределительного типа (фото).

В их основе лежит плунжерная пара (цилиндр и шток), совместная работа которых, приводимаяв действие от коленчатого вала через кулачковый механизм (вал), создает необходимое давление топлива. Разница состоит лишь в том, что в топливном насосе рядного типа количество плунжеров равно количеству цилиндров двигателя, соответственно, каждый плунжер обслуживает свой цилиндр. А в ТНВД распределительного типа — нет. К примеру, на обычном 4-цилиндровом двигателе при распределительном виде топливного насоса высокого давления чаще всего можно встретить 1-плунжерный механизм, который обслуживает все цилиндры. Система работает так, что в определенный момент времени плунжер подает необходимую порцию топлива под давлением к соответствующему цилиндру.

Устройство ТНВД рядного типа.

  1. штуцер напорной магистрали
  2. седло клапана
  3. пружина клапана
  4. корпус насосной секции
  5. нагнетательный клапан
  6. впускное и выпускное отверстия
  7. наклонная поверхность плунжера
  8. плунжер
  9. втулка
  10. рычаг управления плунжером
  11. возвратная плунжерная пружина
  12. пружина толкателя
  13. роликовый толкатель
  14. кулачок
  15. зубчатая рейка

Устройство ТНВД распределительного типа.

  1. шестерня привода регулятора подачи топлива
  2. входное отверствие топлива
  3. выходное отверстие топлива
  4. регулировочный винт
  5. электромагнитный запорный клапан
  6. распределительный блок
  7. штуцеры нагнетательных трубопроводов
  8. плунжер-распределитель
  9. кулачковая шайба
  10. ролик
  11. лопастной топливоподкачивающий насос
  12. фланец

Что из них лучше? — сказать сложно, так как у насосов и рядного, и распределительного типа есть свои неповторимые достоинства: рядный ТНВД за счет меньшей нагрузки на каждый плунжер имеет более длительный срок службы, зато система распределительного типа создает более равномерную подачу топлива.

Топливный насос высокого давления магистрального типа (фото).

Теперь перейдем к ТНВД магистрального типа. Данный тип топливного насоса, а точнее вся система подачи топлива еще иногда встречается под названием “Common Rail”. Главное отличие его от рассмотренных ранее видов в том, что топливо насосом под давлением здесь нагнетается не в камеру сгорания, а в топливную рампу (аккумулятор). Оттуда топливо распределяется по цилиндрам. Момент впрыска при этом контролируется электромагнитной форсункой, которая открывается по команде бортового компьютера. Сам же ТНВД применяемый в такой системе может иметь одну и более плунжерную пару и приводиться в действие от коленчатого вала.

Устройство ТНВД магистрального типа.

  1. приводной кулачковый вал
  2. ролик
  3. плунжерная пружина
  4. плунжер
  5. штуцер напорной магистрали (к топливной рампе)
  6. выпускной клапан
  7. впускной клапан
  8. электромагнитный клапан дозирования топлива
  9. фильтр тонкой очистки топлива
  10. перепускной клапан
  11. штуцер обратного топливопровода
  12. штуцер впускного топливопровода

Завершая обзорное описание видов ТНВД можно еще отметить тот факт, что оба первых типа топливных насосов по своей сути чисто механические узлы. Их работа построена на применение механических законов и может работать вовсе без применения электронных узлов. Система же с магистральным типом ТНВД относиться к более новому поколению, где во всем начинает властвовать электроника.

Ремонт и регулировка топливного насоса высокого давления.

Ремонт и регулировка топливной аппаратуры высокого давления — достаточно сложная задача, требующая как теоретической, так практической подготовки. Совсем мало автомобилистов пытается самостоятельно лезть в ее настройки и уж тем более ремонтировать. Чаще всего дизельными топливными насосами занимаются специализированные станции ремонта и диагностики, которые обеспечены необходимым оборудованием и квалифицированными кадрами.

Единственная задача, на которую можно отважиться самостоятельно, — регулировка оборотов холостого хода (ее описание довольно часто можно встретить в инструкции по эксплуатации автомобиля) – советую прочитать статью как отрегулировать холостой ход карбюратора ВАЗ 2107. Как правило, она подразумевает под собой подтяжку троса акселератора до достижения необходимых параметров. Однако даже такая простая процедура не всегда доступна для обычных автолюбителей на двигателях с электронным управлением впрыска. Ведь здесь кроме самой механической регулировки чаще всего необходимо выполнять еще и электронную настройку системы, которую без специального оборудования не произведешь.

Ну, а в заключении хотелось бы отметить тот факт, что ТНВД — достаточно дорогая деталь двигателя, поломка которой очень часто достаточно сильно бьет по карману автовладельца.

Основными причинами, которые приводят к поломкам топливного насоса, можно назвать некачественное топливо и несоблюдение регламента проведения диагностики. Так что в качестве совета:

1. старайтесь заправляться только на проверенных автозаправочных станция;

2. как только пробег автомобиля потребует проведения обслуживания — не откладывая, загляните на станцию диагностики.

Видео

macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0″>

 

Рекомендую прочитать:

Насосы ТНВД: устройство, принцип работы, модели

Содержание   

Насосы ТНВД – это топливные насосы высокого давления, которые применяются для дизельных двигателей. Дизельные автомобили очень сильно отличаются от бензиновых. Разница именно в том, каким образом происходит воспламенение топлива.

Многие производители, такие как Бош, Тойота, Мицубиси, Ниссан, Форд и другие с каждым годом усовершенствуют свои линейки техники с применением насосов высокого давления. Лучшими производителями ТНВД считаются Bosch, Lucas, Delphi, Denso, Zexel.

Принцип действия

Воздух, нагнетаемый в камеру сгорания дизеля, сжимается под давлением. Кроме того, он нагревается. Таким образом, в камере сгорания дизельного двигателя находится горячий сжатый под давлением воздух.

В тот момент, когда впрыскивается топливо, при соприкосновении с горячим сжатым воздухом оно воспламеняется. И подают дизель в цилиндры мотора под давлением и с определенными промежутками времени, чтобы топливная смесь нормально воспламенялась, именно насосы ТНВД.

Устройство ТНВД

Мощность двигателя и его крутящий момент регулируются количеством топлива, которое насос впрыснул в камеру сгорания. Насосы ТНВД бывают:

  • непосредственного действия, т.е. механический вариант;
  • аккумуляторные, т.е. с аккумуляторным впрыском, или автоматический вариант.

В первом случае срабатывает принцип механического плунжера, при котором нагнетание воздуха и топливный впрыск происходят одновременно. Во втором случае гидравлический аккумулятор или система пружин и форсунок сначала нагнетает давление впрыснутого топлива в аккумулятор, а затем происходит процесс зажигания.

В зависимости от метода подачи топлива в цилиндры двигателя есть три разновидности нопорных установок:

  • рядные;
  • многосекционные или магистральные;
  • распределительные.

Рядные напорные установки – подают в расположенные один за другим цилиндры топливную смесь строго по очереди в каждый из цилиндров. В распределительных вариантах одна и та же секция может подавать топливо сразу в несколько цилиндров. К слову, распределительные установки могут быть одноплунжерными и двухплунжерными. Магистральные только нагнетают топливо внутрь аккумулятора.

Рядные модели различают по количеству цилиндров и давлению при впрыске топлива:

  • М – это 4-6 цилиндровый, при давлении впрыска в 550 бар;
  • А – это 2-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-3000 – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-7100 – это 4-12 цилиндровый, при давлении впрыска в 1200 бар;
  • P-8000 – это 6-12 цилиндровый, при давлении впрыска в 1300 бар;
  • P-8500 – это 4-12 цилиндровый, при давлении впрыска в 1300 бар;
  • R – это 4-12 цилиндровый, при давлении впрыска в 1150 бар;
  • P-10 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • ZW (M) – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-9 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • CW – это 6-10 цилиндровый, при давлении впрыска в 1000 бар;
  • H-1000 – это 5-8 цилиндровый, при давлении впрыска в 1350 бар.

    Топливный Насос Т 25 Рядный

к меню ↑

Внутреннее устройство

Через муфту опережения впрыска и зубчатую передачу коленвала на кулачковый вал передается вращение. Кулачок смещает толкатель, толкатель сжимает пружину и толкает плунжер. Плунжер поднимается, толкает заслонку впускного канала и начинает вытеснять топливо через нагнетательный клапан к форсунке. Чтобы впрыск топлива происходит нормально, нужно, чтобы винтовой и сливной каналы совмещались вовремя.

Распределительная установка ТНВД состоит из:

  • редукционногоклапана;
  • всережимного регулятора;
  • дренажного штуцера;
  • корпуса напорной секции высокого давления в комплекте с плунжерной парой (золотникового устройства) и нагнетательными клапанами;
  • топливоподкачивающего насоса;
  • лючка регулятора (муфты) опережения впрыска;
  • корпуса ТНВД;
  • крышка;
  • электромагнитного клапана выключения подачи топлива;
  • кулачково-роликового устройство привода плунжера.

Муфта впрыска изменяет в зависимости от количества оборотов двигателя угол впрыска топлива. Назначение всережимного регулятора — изменять количество подаваемого топлива в зависимости от режима работы двигателя (запуск, уменьшение или увеличение оборотов, холостой ход, остановка и т.д.).
к меню ↑

Возможные причины поломок

Как только вы заметили отклонения в привычной работе насоса ТНВД нужно выяснить и по возможности как можно быстрее устранить причину поломки. Визуально поломку можно определить по утечкам топлива из корпуса насоса, по затрудненному запуску двигателя, по нехарактерным шумам при работе насоса и по тому, как при уменьшении мощности двигателя увеличивается расход топлива.

Насос ТНВД магистрального типа

Среди самых распространенных поломок можно выделить износ комплектующих и использование топлива низкого качества. И то и другое для уязвимого насоса крайне нежелательно.

Износ приводит к деформации деталей, образованию пустот и снижению надежности напорного аппарата. А примеси в топливных смесях низкого качества приводят к постепенному загрязнению деталей, и, в итоге, к выводу насоса из строя. Если устройство подъедает масло, значит, износились уплотнители. А если заклинит плунжерную пару, то на форсунки перестанет поступать топливная смесь.

В качестве обязательной профилактики стоит всегда следить за качеством топлива, которое вы заливаете в бак. Кроме того, всегда следите за уровнем масла. Периодически, загоняя машину на стенд, нужно регулировать количество и равномерность впрыскивания топлива в ТНВД. Для этого разбирают муфту впрыскивания и соединяют с приводом на стенде кулачковый вал машины.
к меню ↑

ДИАГНОСТИКА И РЕМОНТ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ (ВИДЕО)


к меню ↑

Модельный ряд

Различные компании и корпорации выпускают модели рядных, магистральных и распределительных насосов ТНВД для любых сфер применения. Грузовые и легковые автомобили, трактора, погрузчики и экскаваторы, комбайны и многая другая техника используют все преимущества дизельных насосов ТНВД.
к меню ↑

Модель#1-ТНВД Bosch и Lucas

Это одни из самых надежных производителей напорной техники ТНВД. Модельный ряд установок ТНВД компании Бош достаточно обширен. Модели ТНВД представлены на рынке линейкой рядной и распределительной техники с маркировками: A, M, ММС , P, MW, H, VP29, VP30, VP44. В модельный ряд включены также насосы-форсунки PDE и индивидуальные насосы PLD, VE, Lucas DPS, DPCN.

Особое внимание стоит уделить модели ESR. Это – последняя разработка компании Lucas, которая фактически является роторной моделью ТНВД для высокоскоростных двигателей с системой непосредственного впрыска. Так же внимание производителей внедорожников с системой непосредственного впрыска привлекла модель DP200.

Насос ТНВД и его комплектующие

ТНВД с аккумуляторной топливной системой воплощена в моделях Common Rail.

Это системы магистального типа, на которые в последнее время наблюдается достаточно высокий спрос. Delphi DFP 1.x, DFP 3.x и Bosch CP1, CP2, CP3.2, CP3.4. Они применяются для автомобилей марок Вольво FH-12, FM-12, Мерседес Actros, Атего, Скания 114, 124, R, P, T, Рено Магнум, Премиум DXI, DCI, Ивеко Крузор 8, 10, 13, DAF CF, LF, MACK.
к меню ↑

Модель#2-ТНВД Delphi

Компания Delphi выпускает серию ТНВД EPIC для автомобилей марок Мерседес, Рено Кенго 1.9, Фиат Добло 1.9, Форд Транзит 2.5. А также серию DP200, 210, 310 для автомобилей и погрузчиков JCB, Перкинс, Катерпиллар и John Deere.

Основной проблемой этих насосов стала металлическая стружка, которая образуется в процессе эксплуатации техники от трения механических деталей друг об друга. Поэтому, в них чаще всего приходится заменять плунжеры. Вал в этих моделях ремонту не подлежит. Он только заменяется на новый.

Дозировочный блок тоже подлежит полной замене, потому что выходит из строя по причине износа деталей в процессе наполнения бака некачественным топливом с примесями бензина, воды или твердых частиц.
к меню ↑

Модель#3-DENSO

Эта компания специализируется на производстве моделей ТНВД V3, V4, V5 для автомобилей Тойота, Мицубиси, Опель. А их аккумуляторная система Common Rail маркируется как HP0, HP2, HP3, HP4 и успешно применяется в автомобилях Тойота, Мицубиси, Ниссан, Форд Транзит, Пежо Боксер и Ситроен.

Насос ТНВД DENSO

Отличительной особенностью этой марки стали ECD-регуляторы (Electronically Controlled Diesel system). Это система впрыскивает дизельное топливо при полном контроле электроники. Отрегулировать такие ТНВД можно только на специальных стендах, с использованием контроллеров и форсунок.

Славится своим распределительными ТНВД VRZ для Мицубиси Паждеро 3-Canter, Мазды, Коматсу и других автомобилей. В этих моделях ТНВД без труда можно восстановить плунжерные пары. Кроме того, распределительная техника Zexel используется для японских машин, а от моделей Бош их отличает только номера деталей. В остальном строение абсолютно идентично.
 Главная страница » Насосы

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ СИСТЕМЫ COMMON RAIL.

Статьи компании «ООО «ТД Техлайф»»

После получения технологии прямого впрыска дизельного двигателя с системой COMMON RAIL компании ROBERT BOSCH Gmbh удалось с успехом разработать эффективную схему контроля впрыска, которая получила наибольшее распространение и в мире, благодаря своей простоте и надежности. Системы COMMON RAIL от BOSCH классифицируются по типам насоса высокого давления и могут иметь несколько разновидностей в зависимости от задач двигателя. Системы управления топливоподачей BOSCH могут быть трех типов: с регулированием давления в рампе на стороне высокого давления, регулирование потока топлива на стороне высокого давления при выходе топлива из ТНВД и так называемый «двойной контроль», когда регулировка происходит с помощью датчика контроля потока в ТНВД и посредством регулятора давления на топливной рампе с помощью дозирующего клапана на линии низкого давления на входе в ТНВД.

Система Bosch CP1

Насосы Bosch первого поколения типа CP1 приводятся в работу с помощью вала, соединенного с распредвалом двигателя. Они могут иметь модификации CP1K — компактный дизайн и CP1S — стандартный дизайн, но с регулятором давления на корпусе насоса. Система характеризуется наличием погружного электрического топливного насоса, который подает топливо к ТНВД под давлением 2,6 бар и с производительностью 160 л/час (может меняться в зависимости от модели автомобиля). Электрический топливный насос постоянно активирован при работающем двигателе. Лишнее топливо отводится через предохранительный клапан на блоке топливного фильтра в топливный бак. Блок топливного насоса и указателя уровня топлива оснащен еще одним предохранительным клапаном. При заблокированном топливопроводе предохранительный клапан открывается и подаваемое топливо снова возвращается напрямую в топливный бак. Это позволяет избежать повреждений топливной системы.

ТНВД системы СР1 имеет три плунжера, расположенных радиально к друг другу под углом в 120 градусов. В центре корпуса топливного насоса установлен приводной вал. Привод плунжерных пар осуществляется посредством эксцентрикового кулачка напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода топливного насоса соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. ТНВД СР1 не имеет клапана дозирования топлива. Давление в топливной рампе регулируется исключительно посредством регулятора давления топлива (DRV). ТНВД должен создавать минимальное давление в рампе на уровне 170-200 бар на холостом ходе и 1350 бар на максимальных оборотах. После входного штуцера на линии низкого давления в ТНВД имеется специальный клапан, который переводит часть топлива для смазки внутренних поверхностей насоса. Пружина клапана настроена так, что если давление в магистрали ниже 0,8 бар, то топливо направляется на смазку и охлаждение насоса и затем сливается в линиию обратки. Если давление выше 0,8 бар, то пружина сжимается и большая часть топлива подаётся к плунжерам для сжатия. По мере вращения приводного вала, эксцентрик нажимает на трехгранную втулку, а она надавливает на поршень плунжера. Когда эксцентрик не давит на поршень плунжера, поршень под действием возвратной пружины двигатется к центру насоса, создавая разряжение в камере, которое открывает впускной клапан и топливо попадает в камеру. После нажима эксцентрика на поршень, тот двигается вверх, сжимая топливо и высокое давление в камере перекрывает впускной клапан (как только давление станет около 1 бара), одновременно выдвигая шарик контрольного клапан на впуске и выпуская топливо из камеры уже под высоким давлением. После этого движение поршня вниз снова создает разряжение и шарик перекрывает выпускное отверстие и впускной клапан открывается снова. Такт повторяется. Некоторые варианты насоса могут иметь клапан деактивации одного из плунжеров. Причина его использования — снижение нагрузки на ТНВД на малых оборотах, а также быстрое понижение давления в системе при переходе блока управления в аварийный режим. Клапан деактивации состоит из электромагнита и штока, который перекрывает подачу топлива для сжатия. После подачи сигнала с ЭБУ на клапан, соленоид прижимает шток с золотником клапана к впускному отверстию.

Регулятор давления топлива является частью топливной рампы или расположен на корпусе ТНВД. Клапан на насосе располагается после выпускного штуцера подачи топлива в рампу и отводит часть топлива в линию обратки. Клапан состоит из соленоида и подпружиненного штока, который упирается в шарик для перекрытия сливного канала. Открытие форсунок и работа плунжеров приводят к сильным гидравлическим колебаниям топлива. Шарик в клапане призван гасить эти колебания. Если давление в клапане больше 100 бар, то пружина сжимается и топливо утекает в магистраль обратки. Под управлением сигнала частоты с ЭБУ соленоид двигает шток вперед и он перекрывает слив в обратку, повышая давление в линии. Если ЭБУ не управляет клапаном, то давление находится на уровне 100 бар. Если клапан на рампе, то он находится на линии слива топлива в магистраль обратки и регулирует топливо по сигналу частотной модуляции с блока управления двигателем. Также на рампе устанавливается датчик измерения давления. Он с высокой точностью и за соответственно короткое время измеряет мгновенное давление топлива в рампе и передает в ЭБУ сигнал напряжения, соответствующий имеющемуся давлению. Датчик функционирует вместе с регулятором давления топлива в замкнутом контуре регулирования. Также в рампе может располагаться датчик температуры топлива. Его сопротивление при температуре 25 градсов — 2400 Ом, при температуре 80 градусов — 270 Ом.

Обычно в двигателях с системой Bosch СР1 используются форсунки электромагнитного типа. Принцип работы в следующем: 
Топливо из рампы под выскоим давлением через трубку направляется к форсунке и далее по топливной галерее в форкамеру распылителя, а также через впускной дроссель в управляющую камеру клапана. Управляющая камера клапана соединена с линией возврата топлива в бак через выпускной дроссель, который может открываться электромагнитным клапаном. В закрытом состоянии (электромагнитный клапан обесточен) выпускной дроссель закрыт шариком клапана, поэтому топливо не может выйти из управляющей камеры клапана. В этом положении в форкамере распылителя и в управляющей камере клапана устанавливается одинаковое давление (баланс давления). На иглу распылителя действует дополнительно усилие собственной пружины, поэтому игла распылителя остается закрытой (гидравлическое давление и усилие пружины иглы распылителя). Топливо не попадает в камеру сгорания. При активации электромагнитного клапана открывается выпускной дроссель. За счет этого возрастает давление в управляющей камере клапана, а также гидравлическое усилие, действующее на управляющий золотник клапана. Как только гидравлическая сила в управляющей камере клапана станет меньше гидравлической силы в форкамере распылителя и пружины иглы распылителя, игла распылителя открывается. Топливо через отверстия распылителя впрыскивается в камеру сгорания. Спустя заданное программой время подача электропитания к электромагнитному клапану прерывается. После этого выпускной дроссель снова закрывается. С закрытием выпускного дросселя в управляющей камере клапана через впускной дроссель восстанавливается давление из топливной рампы. Это повышенное давление с большим усилием воздействует на управляющий золотник клапана. Эта сила и сила упругости пружины иглы распылителя теперь превосходят силу в форкамере распылителя и игла распылителя закрывается. Скорость закрывания иглы распылителя определяется расходом впускного дросселя. Впрыск прекращается, как только игла распылителя достигает своего нижнего упора. Косвенное приведение в действие иглы распылителя посредством системы гидравлического сервопривода применяется, когда усилие, необходимое для быстрого открывания иглы распылителя с помощью электромагнитного клапана, не может быть создано напрямую. Для этого дополнительно к объему впрыскиваемого топлива в возврат топлива через дроссели управляющей камеры подается требуемый «управляющий объем». Дополнительное к управляющему объему имеются объемы утечек на перемещение иглы распылителя и управляющего золотника клапана. Электромагнитные форсунки калибруются во время производства и имееют несколько вариантов кодировки. Ранние версии разделены на классы (например, Х, Y, Z у Hyundai) и в случае замены классы форсунок необходимо комбинировать по определенному принципу. В более поздних системах используется код : 8-значный (ЕВРО IV) или 9-значный (ЕВРО V), который представляет собой поправочный коэффициент для коррекции топлива и выгравирован на поверхности головки топливной форсунки. В случае замены форсунок в память ЭБУ необходимо вводить новый код. Также необходимо вводить коды форсунок при замене ЭБУ на новый в память нового блока.

Система Bosch CP1Н

Система Bosch CP1H относится к второму поколению и стала применяться с 2001 года. В отличие от насосов CP1 в СР1Н на стороне подачи топлива в рампу расположен соленоидный клапан контроля количества топлива, подаваемого из насоса в рампу. Эта конструкция впервые была применена на типе СР3, но добавлена к СР1 для увеличения производительности насоса. Это позволяет увеличить эффективность насоса, понизив температуру топлива, нагрузку и повысив создаваемое давление. Привод топливного насоса осуществляется напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. Топливный насос может вырабатывать максимальное давление топлива от 1600 до 1800 бар. Еще одна особенность системы СР1Н — использование деактиватора одного из плунжеров в случае, если нет необходимости развивать максимальное давление в рампе.

В случае, если в системе не используется погружной электрический насос, ТНВД может быть оборудован подкачивающим насосом шестеренного типа. Основные конструктивные детали – две находящихся в зацеплении шестерни, вращающиеся друг навстречу другу и подающие топливо, защемленное во впадинах между зубьями, из полости всасывания в полость нагнетания. Контактная линия шестерен между полостью всасывания и полостью нагнетания уплотнена, что исключает возможность обратного перетекания топлива. Подача насоса примерно пропорциональна частоте вращения двигателя. В этой связи требуется регулирование подачи / переходного давления. Величина переходного давления, нагнетаемого зубчатыми колесами, зависит от дросселирующих отверстий и их проходного сечения в перепускном дроссельном клапане. Перепускной дроссельный клапан интегрирован в контур низкого давления топливного насоса. Создание высокого давления (до 1800 бар) вызывает высокую температурную нагрузку на отдельные детали топливного насоса. Поэтому для обеспечения выносливости механические детали топливного насоса должны обильно смазываться. Перепускной дроссельный клапан спроектирован так, чтобы при любом режиме эксплуатации обеспечить оптимальное смазывание и, соответственно, охлаждение. При низкой частоте вращения топливного насоса (низкое давление подкачивающего насоса) управляющий золотник лишь немного смещается со своего седла. Потребность в смазке/охлаждении, соответственно, мала. Открывается малая подача топлива через дроссель на конце управляющего золотника для смазки/охлаждения насоса. Некоторые ТНВД могут быть снабжены автоматической вентиляцией (Форд). Через дроссель отводится воздух, который может находиться в топливном насосе. С ростом частоты вращения топливного насоса (ростом давления подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. При растущей частоте вращения топливного насоса требуется усиленное охлаждение топливного насоса. При заданном давлении открывается байпасное охлаждение топливного насоса и расход топливного насоса увеличивается. При высокой частоте вращения топливного насоса (высоком давлении подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. Теперь байпасное охлаждение топливного насоса полностью открыто (максимальное охлаждение). Избыток топлива через байпас обратного потока возвращается в полость всасывания подкачивающего насоса. Таким образом внутреннее давление топливного насоса СР1Н (как и СР1) ограничивается значением 6 бар.

Привод топливного насоса осуществляется от приводного вала, а конструкция, в целом, аналогична CP1. На приводном валу жестко смонтирован эксцентрик, который перемещает три плунжера насоса возвратно-поступательно в соответствии с профилем кулачка эксцентрика. На впускной клапан подается давление топлива от подкачивающего насоса. Если переходное давление превышает внутреннее давление камеры высокого давления (плунжер превышает положение TDC (верхняя мертвая точка)), то впускной клапан открывается. Заполнение камеры высокого давления функционирует комбинировано: С одной стороны, топливо под воздействием переходного давления нагнетается в камеру высокого давления. Давление при этом зависит от проходного сечения клапана дозирования топлива. С другой стороны, топливо при движении плунжера вниз засасывается в камеру высокого давления. Если пройдена BDC (нижняя мертвая точка) плунжера, то впускной клапан закрывается вследствие возросшего давления в камере высокого давления. Топливо больше не может проходить в камеру высокого давления. Как только давление в камере высокого давления превысит давление в топливной рампе, открывается выпускной клапан, и топливо через подсоединение высокого давления нагнетается в топливную рампу (ход подачи). Плунжер насоса подает топливо до тех пор, пока не будет достигнута TDC. Затем давление падает, и выпускной клапан закрывается. Оставшееся топливо более не находится под давлением; плунжер насоса движется вниз. Если давление в камере высокого давления ниже переходного давления, впускной клапан снова открывается, и процесс начинается сначала.

Линия подачи топлива под высоким давлением в рампу имеет ответвление, которое проходит через Клапан регулировки давления для слива лишнего топлива в бак. Клапан установлен или сбоку или позади ТНВД в зависимости от конструкции.

Система Bosch CP3

Система BOSCH CP3 появилась в 2003 году и стала третьим поколением систем BOSCH для прямого впрыска дилеьного топлива. Базовый дизайн насоса CP3 идентичен СР1 и СР1Н. Но в этом типе применена новая технология контроля давления не в линии высокого давления, в на стороне подачи топлива в ТНВД. Для этого применен новый элемент — клапан контроля количества подаваемого в насос топлива (IMV). Корпус имеет новую форму моноблока со сниженным уровнем трения. Другая отличительная особенность — не прямое воздействие эксцентрика на плунжер, а передача усилия через толкатель, что позволяет увеличить нагрузку и добиться максимального давления в 1800 бар. Эти насосы используются как на легковых, так и на коммерческих автомобилях. Версии СР3.1 ~ СР3.4 отличаются размером и уровнем давления в зависимости от выполняемой автомобилем задачи. Версия СР3.4 используется только на грузовиках и автобусах.

Одна из отличительных особеннгостей системы — использование механического передающего насоса, расположенного в задней части ТНВД на линии низкого давления. Насос может быть шестеренчатого типа, как у CP1H, а может быть роторный роликового типа. Такой тип насоса включает в себя эксцентрично расположенную камеру с установленным в ней ротором и роликами, которые могут перемещаться в прорезях ротора. Вращение ротора вместе с создаваемым давлением топлива заставляют ролики перемещаться на периферию прорези, прижимаясь к рабочим поверхностям. В результате ролики действуют как вращающиеся уплотнители, посредством чего между роликами соседних прорезей и внутренней, рабочей поверхностью корпуса насоса, образуется камера. Создание давления определяется тем, что при закрытии входной серпообразной полости объем камеры постоянно уменьшается, и когда выходное отверстие открывается, топливо течет через электромотор и выходит из штуцера в крышке на нагнетательной стороне насоса.

Система Bosch CP4

Система Bosch CPN2

Насосы типа CPN2 используются только в коммерческих автомобилях. Их отличие — два вертикально расположенных в линию качающих плунжера. В некоторых редких случаях применялись насосы с четырьмя качающими элементами.

Сравнительная Таблица Насосов Высокого давления Bosch

Тип ТНВД

Максимальное давление в рампе (Бар)

Тип смазки

CP1

1350

Диз. Топливо

CP1+

1350

Диз. Топливо

CP1H

1600 / 1800

Диз. Топливо

CP1H+OWH

1100

Диз. Топливо

CP3.2

1600

Диз. Топливо

CP3.2+

1100

Диз. Топливо

CP3.3

1600

Диз. Топливо

CP3.4

1600 / 1800

Масло

CP3.4+

1600

Диз.Топливо

CP2

1400

Масло

CP2.2

1600

Масло

CP2.2+

1600

Масло

CP2. 4

1600

Масло

CP4.1

1800 / 2000

Диз. Топливо

CP4.2

1100 / 2000

Диз. Топливо

Список автомобилей, на которых используется система COMMON RAIL типа BOSCH:

IVECO 190 E40=EUROTECH CURSOR 10
IVECO 380/400/410 T42
IVECO 180E24,E27,190224, 190E27,190E31,190E35,260E24,260E27 
IVECO CURSOR 8 
IVECO STRALIS
SCANIA DSC
MERCEDES ACTROS
SCANIA R420/R500/R580
SCANIA R380/480 
MERCEDES ACTROS 
MERCEDES ACTROS/TRAVEGO
VOLVO Fh22 / BOSCH 
VOLVO FH 12 / EURO I-II (BOSCH — MARK2 PUMP)
VOLVO Fh22 EURO II / BOSCH EQUIP. 
MERCEDES ATEGO,CITARO 
MERCEDES ACTROS 
MERCEDES CITARO/AXOR/TRAVEGO
IVECO 180=190 E38 EUROSTAR=400/440 E38 EUROSTAR 
RENAULT MAGNUM 400/440/480 E-TECH=DAF=KHD
AUDI A4/A6=SKODA SUPERB=VW PASSAT 1. 9TDI 
AUDI A3=SEAT LEON/TOLEDO=VW BORA/PASSAT/GOLF 1.9 TDI 
AUDI A2/A4/A6 1.4/1.9 TDI=SEAT AROSA 1.4 TDI=VW LUPO
AUDIA3/A4=VW PASSAT/POLO/BORA=SKODA FABIA/SUPERB 1.9TDI
VW 1.9 TD ENGINE AXR 
VW VAN 
BMW 330D/XD/530D/730D/X5 3.0D 
LAND ROVER FREELANDER I 2.0 TD4
CHRYSLER VOYAGER 2.5/2.8 CRD 
RENAULT KERAX/PREMIUM 370 Dci with pump CP2
OPEL MOVANO+RENAULT MASTER 2.5 Dci 16v.
TOYOTA SR 
VW LT 28/35/46 2.8 Tdi+CHEVY BLAZER 2.8 DE+NISSAN FRONTIER 2.8 
ISUZU 
FIAT=OPEL ASTRA/VECTRA/ZAFIRA 1.9 Cdti 
HYUNDAI ACCENT II/MATRIX/i30 1.5 CRDi, TUSCAN/SANTA FE’/TRAJET 2.0 CRDi, h2/STAREX/PORTER/IX35/IX55
RENAULT KERAX/PREMIUM 370/420 Dci with pump CP2 
KIA 2.0 CRDi-VGT 
FIAT DOBLO’/IDEA/PANDA/G.PUNTO+LANCIA MUSA/Y 1.3 MULTIJET 
ALFA MITO+FIAT 500/PANDA/QUBO+OPEL CORSA 1.3 
MERCEDES C/E/S/ 200/220/270/280/320 CDI
MERCEDES VITO 108/110/112/E/ML/S/V/CLK 200/220/320/370 CDI
MERCEDES G 270 CDI/E/ML/S 400 CDI/SPRINTER 
KIA SORENTO 2. 5 CRDI ALLA156P1265+ 
MERCEDES C30 CDI AMG/C30 CDI AMG 
HYUNDAI LIBERO/STAREX+KIA SORENTO 2.5 CRDI 
MERCEDES SPRITER 208/308/408 CDI 2.2cc
BMW 320D/330D/530D/730D/740D 
DODGE RAM 2500/3500 
IVECO DAILY/DUCATO 2.8/ RENAULT MASTER 2.8 
IVECO DAILY 29L 10/L12/35C10/C12/35S10/S12//RENAULT MASTER
VOLVO 
RENAULT/MACK TRUCKS 
RENAULT ESPACE IV+LAGUNA II+MASTER+MEGANE+SCENIC 1.9 DCI
REMAULT MEGANE/ LAGUNA 1.9 DCI
FIAT ULYSSE/DUCATO 2.0 JTD ENGINE PSA 
CITROEN XANTIA+PEUGEOT 406 2.0 HDI
FIAT ULYSSE 2.0 JTD (MOTORE PEUGEOT) 
IVECO 100 E 17/65+CUMMINS 
VW CONTELLATION+VOLKSBUS+13.180/15.190 ELECTRONIC 
ALFA ROMEO 147/156/166(1.9/2.4 JTD) 
CITROEN 2.0 HDI/PEUGEOT 2.0 HDI 
FIAT PUNTO JTD 
OPEL MOVANO/VIVANO+RENAULT MASTER+TRAFIC 2.5 DCI 
ALFA ROMEO 166+FIAT BRAVO/BRAVA+MULTIPLA+LANCIA 1.9/2.4 JTD
BMW 530D+730D ENGINE E39 
TOYOTA HILUX VIGO 3.0 TD 
OPEL MOVANO 2.2 DTI 
PEUGEOT 206.307 1.4 HDI=CITROEN XSARA 1. 4 HD
MERCEDES CDI VARIE CC./SPRINTER VARIE 
MERCEDES 316CDI SPRINTER/VITO 108/110/112 CDI/V200/220 CDI 
MERCEDES E 200 CDI / E 220 CDI / E 270 CDI
MERCEDES CLASSE A 160/170 CDI 
MERCEDES C/E/VITO/SPINTER 220/270 CDI 
MERCEDES CLASSE A 160/170 CDI

Механические ТНВД VE типа. Устройство и принцип работы.

Топливный насос высокого давления (ТНВД) — основной конструктивный элемент системы впрыска дизельного двигателя, выполняющий две основные функции: дозированную подачу топлива в цилиндры двигателя под давлением и определение правильного момента начала впрыска. После появления аккумуляторных систем впрыска, задачу определения момента подачи топлива выполняет электронная форсунка.

Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД

Принципиальная схема системы топливоподачи дизеля с одно­плунжерным распределительным топливным насосом (ТНВД) с торцевым кулачко­вым при­водом плунжера показана на рисунок:

Рис. Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД: 1 – топливопровод низкого давления; 2 – тяга; 3 – педаль подачи топлива; 4 – ТНВД; 5 – электромагнитный клапан; 6 – топливопровод высокого давления; 7 – топливопровод сливной магистрали; 8 – форсунка; 9 – свеча накаливания; 10 – топливный фильтр; 11 – топливный бак; 12 – топливоподкачивающий насос (применяется при магистралях большой протяженности; 13 – аккумуляторная батарея; 14 – замок «зажигания»; 15 – блок управления временем включения свечей накаливания

Топливо из бака 11 прокачивается по топливо­проводу низкого давления в топливный фильтр тонкой очистки топлива 10, откуда засасывается топливным насосом низкого давления и затем направляется во внутреннюю полость корпуса ТНВД 4, где создается давление порядка 0,2 … 0,7 МПа. Далее топливо поступает в насосную секцию высокого давления и с помощью плунжера — распреде­лителя в соответствии с порядком работы цилиндров подается по топливопроводам высокого давления 6 в форсунки 8, в результате чего осуществляется вспрыскивание топлива в камеру сгорания дизеля. Избыточное топливо из корпуса ТНВД, форсунки и топливного фильтра (в некоторых конструкциях) сливается по топливо­проводам 7 обратно в топливный бак. Охлаждение и смазка ТНВД осуществляются циркулирующим в системе топливом. Фильтр тонкой очистки топлива имеет важное значение для нормальной и безаварийной работы ТНВД и форсунки. Поскольку плунжер, втулка, нагнетательный клапан и элементы форсунки являются деталями прецизионными, топливный фильтр должен задерживать мельчайшие абразивные частицы размером 3…5 мкм. Важной функцией фильтра является также задержание и выведение в осадок воды, содержащейся в топливе  Попадание влаги во внутреннее пространство насоса может привести к выходу последнего из строя по причине образования коррозии.

Топливный насос подает в цилиндры дизеля строго дози­рован­ное количество топлива под высоким давлением в определенный момент времени в зависимости от нагрузки и скоростного режима, поэтому характеристики двигателей существенно зависят от работы ТНВД.

Схема и общий вид распределительного насоса VE

Схема распределительного насоса VE представлена на первом рисунке, а его общий вид на следующем.

Основные функциональные блоки топливного насоса VE представляют собой:

  • роторно-лопастной топливный насос низкого давления с регулирующим перепускным клапаном
  • блок высокого давления с распределительной головкой и дозирующей муфтой
  • автоматический регулятор частоты вращения с системой рычагов и пружин
  • электромагнитный запирающий клапан, отключающий подачу топлива
  • автоматическое устройство (автомат) изменения угла опережения впрыскивания топлива

Рис. Схема топливного насоса — Bosch VE: 1 – вал привода насоса; 2 – перепускной клапан регулирования внутреннего давления; 3 – рычаг управления подачей топлива; 4 – грузы регулятора; 5 – жиклер слива топлива; 6 – винт регулировки полной нагрузки  7 – передаточный рычаг регулятора; 8 – электромагнитный клапан остановки двигателя; 9 – плунжер  10 – центральная пробка; 11 – нагнетательный клапан; 12 – дозирующая муфта; 13 – кулачковый диск; 14 – автомат опережения впрыска топлива; 15 – ролик; 16 – муфта; 17 – топливо-подкачивающий насос низкого давления

Рис. Общий вид распределительного ТНВД VE: а – ТНВД; б – блок высокого давления с распределительной головкой и дозирующей муфтой. Позиции соответствуют позициям на предыдущем рисунке.

Дополнительные устройства распределительного ТНВД VE

Распределительный ТНВД VE может также быть оснащен различными дополнительными устройствами, например, кор­рек­торами топ­ливоподачи или ускорителем холодного пуска, которые позволяют индивидуально адаптировать ТНВД к особенностям данного дизеля.

Вал привода 1 топливного насоса расположен внутри корпуса ТНВД, на валу установлен ротор 17 топливного насоса низкого давления и шестерня привода вала регулятора с грузами 4. За валом 1 неподвижно в корпусе насоса установлено кольцо с ро­ли­ками и штоком привода автомата опережения впрыски­вания топлива 14. Привод вала ТНВД осуществляется от колен­чатого вала дизеля, шесте­ренчатой или ременной передачей. В че­тырехтактных двигателях частота вращения вала ТНВД составляет половину от частоты вращения коленчатого вала, и работа распределительного ТНВД осуществляется таким образом, что поступательное движение плунжера синхронизировано с движением поршней в цилиндрах дизеля, а вращательное обеспечива­ет распределе­ние топлива по цилиндрам. Поступательное движение обеспечивается кулачковой шай­бой, а враща­тельное – валом топливного насоса.

Автоматический регулятор частоты вращения включает в себя центробежные грузы 4, которые через муфту регулятора и систему рычагов воз­действуют на дози­рующую муфту 12, изменяя таким образом величину топливоподачи в зависимости от скоростного и на­грузочного режимов дизеля. Корпус ТНВД закрыт сверху крышкой, в которой установлена ось рычага управления, связанного с педалью акселератора.

Автомат опережения впрыскивания топлива является гидравлическим устройством, работа которого определяется давлением топлива во внутренней по­лости ТНВД, создаваемым топливным насосом низкого давления с регулирующим перепу­скным клапаном 2.

Устройство и принцип работы ТНВД Bosch

ТНВД и ТННД

На чтение 4 мин. Просмотров 1.3k.

Рано или поздно любой водитель автомобиля может встретиться с проблемой поломки тнвд. В этой статье вы найдете всю основную информацию по теме как: устройство тнвд бош. Начинайте читать уже сейчас!

Топливный насос высокого давления относится к самым сложным узлам системы топливоподачи дизельных двигателей.

Принцип работы ТНВД заключается в подаче к цилиндрам дизельного двигателя в определенный момент и под определенным давлением точно отмеренных порций топливной смеси, которые соответствуют данной нагрузке.

В топливных насосах непосредственного действия проходит механический привод плунжера, а процесс момента впрыска и нагнетания проходят одновременно. Во все цилиндры секцией ТНВД подается необходимая порция топливной смеси. Необходимое давление для впрыска и распыления обеспечивает плунжерный насос. В представленной нами статье мы более подробно поговорим об данной детали производителя bosch, а именно рассмотрим такие довольно распространенные вопросы:

  • Где купить ТНВД и комплектующие?
  • Что такое топливный насос высокого давления?
  • Устройство ТНВД;
  • В чем заключается принцип работы ТНВД бош?
  • Устройство рядного ТНВД бош;
  • Как правильно разобрать ТНВД фирмы bosch?
  • Плунжерный ТНВД bosch, его устройство и принцип работы;
  • Принцип работы момента впрыска ТНВД фирмы bosch;
  • Установка ТНВД bosch.
Тнвд bosch

Основная информация о топливном насосе

Итак, в чем заключается принцип работы ТНВД? Принцип работы ТНВД фирмы бош, так же как и момент впрыска ничем не отличается от ТНВД других производителей. Основным элементом ТНВД фирмы бош является плунжерный насос. Топливный насос рассчитан на то, чтоб под большим давлением передавать определенную порцию топлива к двигателю и не допускать две крайности, такие как его недостаток и избыток. Поэтому поломки на которые владелец автомобиля может не обращать внимание или оценивать их как несущественные, могут привести к ремонту дизельного двигателя или полной его замене. Главным критерием, по которому топливные насосы разделяют на типы, является их устройство. Итак, на основании устройства топливных насосов их разделяют на такие типы:

  • Распределительные. Оснащаются форсунками и регуляторами механического типа. Современные моторы оснащаются рядными ТНВД (топливный насос с высоким давлением) с электрическим управлением. Представленный тип насосов считается самым простым, хотя и отличается значительными размерами и весовыми характеристиками;
  • Рядные. Оснащается одной или несколькими плунжерными парами, нагнетающими топливную смесь и распределяющими ее по цилиндрам. Данный тип намного меньше и легче по сравнению с рядными. Хотя такое преимущество приводит к некоторым недостаткам, например, быстрый износ деталей распределительного типа;
  • Магистральные. Как правило, они используются в системе впрыскивания commonrail. Их основной и единственной функцией является нагнетание топливной смеси в рампу. Количество плунжеров колеблется от одного до трех. В данном типе ТНВД также применяются такие детали как шайба или кулачный валик, приводящие плунжеры в действие.

Разборка и установление топливного насоса

Достаточно очевидным фактом является то, что без использования ТНВД подавать топливо к двигателю было бы сложно. Именно поэтому достаточно логично, что такому типу топливного насоса уделяется столько внимания автолюбителей, которые занимаются ремонтом моторов такого типа.

Ремонт тнвд bosch

Самыми распространенными причинами неполадок являются:

  • Применение низкокачественного топлива, а это может привести к поломке топливного насоса. Для ТНВД применяется дизельное топливо, в качестве смазывающего материала для движущихся деталей и плунжерных пар. В случае загрязнения топлива разными примесями теряется смазывающее свойство, а это может привести к неисправности топливного насоса в дальнейшем;
  • Износ топливного насоса;
  • Проблемы с электрической техникой. Неправильное функционирование электроники автомобиля может сказываться на нормальном функционировании остальных систем.

Для того чтобы качественно отремонтировать топливный насос высокого давления, необходимо знать как проводится разборка и установка, когда восстановление ТНВД невозможно и какие детали нуждаются в замене, для устранения неисправностей. Итак, как правильно проводится разборка и установка топливного насоса высокого давления?

  • Открутите 4 винтика на торцевой стороне;
  • Освободите кабель клапана опережения впрыска из-под прижимной пластины;
  • Открутите 3 винтика, которые закрепляют прижимные пластины дозирующего клапана;
  • Снимите дозирующий клапан;
  • Открутите 2 винтика, которые закрепляют клапан угла опережения впрыска;
  • Снимите клапан опережения впрыска;
  • Открутите винтики, закрепляющие так называемые мозги;
  • Отодвиньте мозги и открутите винтики, которые закрепляют датчик положения валика топливного насоса;
  • Снимите мозги вместе с ливером;
  • Установите на метку шкив и запомните расположение валика вместе с дозирующей иглой;
  • С помощью двух плоских отверток, закладывая их попарно-диаметрально за уши, осторожно камеру вместе со штуцерами;
  • Достаньте подшипник и пластинки;
  • Открутите крышку автомата опережения;
  • Достаньте автомат опережения впрыска;
  • Установите поршень опережения так, чтобы во время поворота из него можно было извлечь кулочковую шайбу;
  • Достаньте поршень опережения впрыска;
  • Топливный насос разобран, а его сборка выполняется в обратном порядке.

Дизельные системы впрыска — принцип работы, типы

Системы впрыска дизельного топлива – далее по тексту также СВДТ – это системы питания ДВС. Функционируют на дизельном топливе – смеси газойлевых соляровых и керосиновых фракций, которые предварительно прошли специальную обработку. Но речь идёт именно о наличии соляровых фракций которые прошли щелостную очистку, а не о классической солярке с недостающим уровнем вязкости и выкипающей при температуре 240-400 °C 

Также в дизельных двигателях в качестве альтернативной топливной смеси может использоваться «Bio-Diesel» – смесь моноалкильных эфиров жирных кислот. Как правило, Bio-Diesel делают из рапсового масла.

Принцип работы

Воспламенение – результат сжатия и нагрева дизельного топлива под высоким давлением в цилиндрах. То есть на деле мы имеем дело с самовоспламенением впрыскиваемого топлива при его контакте с горячим воздухом. Все процессы происходят внутри. Этот принцип диаметрально противоположен бензиновым системам, у которых топливо воспламеняется от искры зажигания – внешнего источника.

Чтобы понимать, как функционируют системы впрыска топлива дизельного двигателя, важно чётко разбираться, за что ответственен каждый её элемент.


СВДТ включает в себя: 

  1. Топливный бак. В нём непосредственно и хранится топливо.
  2. Насосное оборудование для подкачки топлива из бака.
  3. Фильтры грубой и тонкой очистки топлива. Главная функция – защита от загрязнений форсунок.
  4. ТНВД (топливный насос высокого давления). Самый сложный узел дизельного ДВС. Прямая задача ТНВД – не просто создавать давление, а распределять топливо по цилиндрам, то есть регулировать его объем. Исключение – СВДТ Common Rail. У них сразу создаётся оптимальный уровень давления. А остальные задачи решаются посредством инжектора. Установку ТНВД считают одну из наиболее сложных, но важных задач мастера. Точность взаимного позиционирования кулачкового вала ТНВД по отношению к коленчатому валу двигателя напрямую влияет на мощность ДВС и его топливную эффективность (экономичность).  
  5. Форсунку. Корпус с клапаном.
  6. Сливную магистраль. Топливо из камеры управления вытекает через дроссель в сливную магистраль.
Высокое давление создаёт идеальные условия для того, чтобы свежий заряд во время такта сжатия нагревался до температуры, которая превышает температуру воспламенения.

Работа осуществляется по следующей схеме:

  • Давление действует на поршень.
  • Поршень через шатун и кривошип коленчатого вала побуждают двигатель совершать полезную работу.
  • СВДТ дозирует само топливо, ориентируясь на текущую нагрузку ДВС.
  • Впрыск осуществляется на протяжении определенного промежутка времени с заданной интенсивностью.
  • Топливо распределяется по всему объему камеры.
  • Проводится фильтрация топливной смеси.
  • Топливо поступает в насосы, форсунки.


Типы дизельных систем питания

Решающее влияние на конструкцию системы впрыска дизельного двигателя оказывает способ подачи и распыливания.

Существует 4 основных типа СВДТ:

  • С рядным насосом. Системы с рядным ТНВД, работающие за счёт плунжерных пар, количество которых равно количеству цилиндров в системе. “Прародитель” СВДТ.
  • С насосом распределительного типа. Каждая секция взаимодействует с одним цилиндром. 
  • Системы с насос-форсунками. ТНВД и форсунки консолидированы в единый узел. Плюс такого решения очевиден: нет препятствий для создания и поддержания высокого давления (включая давление более 2000 кг/см2). 
  • Сommon Rail. Системы с электромагнитным клапаном. Обеспечивают электронное управление цикловой подачей.  СВДТ знакома потребителю в двух модификациях: селективного и накопительного типа. Разница — в используемых каталитических конвертерах.
СВДТ с рядным насосом и насосом распределительного типа установлены, преимущественно, на старых авто: с рядным насосом –  на грузовиках, спецтехнике, с насосом распределительного типа — на легковых авто, на старых легковых авто и грузовом транспорте с небольшими габаритами.    

На рисунке — решения с рядным и распределительным ТНВД.

Если сравнивать рядные насосы и распределительные ТНВД, то важно понимать насосы распределительного типа полезны, когда нужны очень компактные и лёгкие решения. Рядные топливные насосы – при поиске оптимального варианта для ДВС тяжёлой техники.

Но будущее — за Сommon Rail и насос-форсунками. При этом особенно на практике хорошо себя зарекомендовали решения с индивидуальными — PLD-секциями. Плунжерная пара и управляющий элемент у них отделены от впрыскивающего элемента – форсунки, и соединены трубкой высокого давления.

Мастера СТО, принимая на диагностику автомобили с  PDL-секций, могут гарантировать клиентам быстрое обнаружение неисправностей и ремонт  СВДТ. Это обусловлено тем, что при диагностике и дальнейшем ремонте не нужно “вклиниваться” в головку блока цилиндров. Доступ к узлу – незатруднённый, поэтому сервис – максимально  быстрый.

С рядным насосом

Конструкция с рядным насосным оборудованием появилась самой первой. Работает она по такому принципу:
  • Цилиндр движется в гильзе, создаёт давление и сжимает топливо. 
  • При достижении нужного давления открывается клапан. 
  • Дизтопливо поступает к форсункам (количество форсунок в таких конструкциях всегда соответствует количеству плунжерных пар).
  • Первые конструкции с рядным насосом были полностью механические, затем появились устройства с электромеханикой. Это облегчило регулировку цикловой подачи топлива. 

Решения сумели зарекомендовать себя как достаточно надёжные и с большим ресурсом, но есть у них и заметные недостатки:

  • большой вес насосного оборудования,
  • проблемы при создании больших показателей давления (особенно, если речь — о полностью механических конструкциях),
  • низкое быстродействие,
  • сомнительная точность дозирования топливной смеси.

Требования к качеству дизельного топлива значительно выше, нежели к бензину. Это можно связать с конструктивными особенностями СВДТ.

Качество процесса сгорания топливной смеси в цилиндре зависит от самого начала подачи дизельной смеси. Управление началом процесса осуществляется посредством регулятора начала подачи.

Непосредственно за регулировку объема топлива, подаваемого в цилиндр за один цикл, как понятно из текста выше, отвечает плунжерная пара. Расстояние между втулкой и плунжером очень маленькое (речь идёт о десятых микрона). Такие же цифры характеризуют и точность изготовления распылителей форсунок. Вот почему и требования к качеству дизтоплива очень высокие. Если в нём много примесей, топливная аппаратура быстро выходит из строя.

С  насосным оборудованием распределительного типа

Существенно улучшить ситуацию, найти оптимизированное решение, которое позволяет достигать большего давления, позволяют системы впрыска дизельного топлива распределительного типа. Да, существует зависимость давления от оборотов ДВС. Но, главное, в этом случае все под полным контролем.

Устройства с рядным насосом бывают механическими и с электрорегулировкой.

Плунжерная пара у первых ТНВД была всего одна, у более поздних моделей — с ротором — плунжерных пар несколько. Такие решения — более производительные.  При этом плунжерная пара (или несколько пар) связаны сразу с несколькими форсунками: двумя, четырьмя, шести.

Плунжер совершает сразу два типа движений — вращательное и поступательное. Таким образом, в зоне его ответственности — как подача, так и распределение топливной смеси.

В противовес устройствам с рядным насосом габариты — существенно меньше, топливная экономичность — больше, но надежными такие системы назвать нельзя.  Если случается неисправность насоса, то вся СВДТ может выйти из строя.

Ещё один значительный недостаток — чувствительность к завоздушиванию. В свое время это стало серьёзным поводом для “переключения” производителей на СВДТ другого типа (с насос-форсунками и и Сommon Rail).

Насос-форсунки

В СВДТ с насос-форсунками  форсунки и плунжеры  составляют единую конструкцию. Запуск узла осуществляется от распредвала (за счёт механической рейки + регуляторов или чаще электромагнитных клапанов — последние обеспечивают лучшую производительность и точность дозирования топливной смеси).  

Давление можно увеличивать максимально быстро и  при этом — на существенные значения. Это возможно благодаря тому, что магистрали высокого давления у СВДТ с насос-форсунками — очень короткие, а усилие от кулачков через коромысло направлено непосредственно к насос-форсунке.

Впрыск — многофазный:

  • Предварительный. Обеспечивает смеси дальнейшую плавность сгорания. 
  • Основной. Осуществляется при целенаправленном движении плунжера вниз, направлен на качественное смесеобразование во всех режимах работы ДВС. чем больше давление, тем больше дизеля впрыскивается в камеру ДВС.
  • Дополнительный — очищающий. Плунжер продолжает двигаться вниз. Из фильтра интенсивно уходит сажа. 
  • Кстати, у ряда автомобилистов часто возникает вопрос. “Сажа? Но откуда?” Ведь многие годы дизельные ДВС называли более чистыми, нежели бензиновые. Однако во внимание не бралось одно существенное «но». При сильном разгоне образуется достаточно много сажи.

Особенно эта проблема актуальна для решений с механическим управлением дозирования топливной смеси. Если же речь идёт о решениях, управляемых электроникой, всё существенно лучше, выхлопы — чище. 

А вот весомый плюс всех решений с насос-форсунками, так это то, что  производитель  может позволить более высокую мощность ДВС, нежели в случае с рядным и распределительным насосом, дизтоплива водителю требуется меньше, уровень шума существенно уменьшается.

Система впрыска дизельного двигателя Сommon Rail


Решение Сommon rail  (“общая магистраль”, аккумуляторная СВДТ позволяет организовать двойной впрыск. 
  1. На первом этапе осуществляется предварительный впрыск небольшой порции топливной смеси.
  2. На втором этапе проводится основной впрыск под высоким давлением. С Common Rail  нет проблем достигнуть давления 220 -300 МПа. 
Шумность работы и образование сажи в этом случае ниже, а топливная эффективность выше.

Благодаря организации электронного управления цикловой подачей в случае использования с электромагнитным клапаном можно существенно повлиять на показатель скорости, с которой топливоподающей система реагирует на изменение нагрузки и давления наддува.

Сначала в процессе задействован клапан цикловой подачи, а далее в работу вступает тактовый клапан управления моментом подачи. 

Common Rail обеспечивает возможность осуществить впрыск предварительной небольшой порции топлива, а только потом переходить к работе к основной порции дизтоплива, легко достичь ровной характеристики горения топливной смеси. Ведь в таких случаях давление получается удерживать практически стабильным.

Как и в случае с насос-форсунками работа ступенчата. Выделяется предварительный (на холостом ходу), основной (при увеличении нагрузки) и дополнительный впрыск (при нагрузке, достигающей плато).

Дизельные системы впрыска Common Rail создают идеальные условия для того, чтобы СВДТ соответствовали строгим экологическим нормам, ДВС были маломощными, производство компонентов было более дешевым, а диагностика — оперативной. Активным выпуском Common Rail заняты такие мировые гиганты, как BOSCH, DENSO, SIEMENS. СВДТ Common Rail активно устанавливается на Volvo, Volkswagen, Fiat,  Toyota, Alfa Romeo, Mazda, Ford, Nissan,Honda, Hyundai, Kia и др.

Комплексно изучить дизельные двигатели автомобилей, включая плунжерное насосное оборудование,систему непосредственного впрыска Common Rail поможет интерактивная электронная программа “Дизельные двигатели автомобилей”

Видеообзор интерактивной программы

Топливный насос

Принцип работы в дизельном двигателе

В обычных дизельных двигателях есть два типа топливных насосов: линейный насос и распределительный насос.

Мы обсуждали разницу между двумя типами насосов в предыдущей статье, вы можете получить доступ к этим 3 типам топливных насосов в дизельных двигателях.

В этой статье мы подробно поговорим о встроенном ТНВД.

Как это работает? какие компоненты? мы все это обсудим.

Определение линейного нагнетательного насоса


Встроенный впрыскивающий насос — это насос высокого давления на дизельном двигателе, который используется для индивидуального повышения давления дизельного топлива до 18 000 фунтов на квадратный дюйм.

То есть каждый инжектор будет обслуживаться плунжерным узлом.

Можно сказать, что в 4-цилиндровом дизельном двигателе 4 инжектора и 4 поршня.

Основная характеристика линейного ТНВД заключается в конфигурации каждого плунжера. Каждый плунжер расположен на одной линии над насосом распределительного вала.

Отсюда и произошло название «встроенный насос». Помимо того, что этот тип называется встроенным насосом, этот тип также известен как индивидуальный насос, потому что, как объяснялось выше, в этом типе используется один плунжер для каждого цилиндра.

Главный компонент линейного ТНВД

В линейном ТНВД 5 основных компонентов,

  • Насос распределительного вала
  • Плунжер
  • Бочка топливная
  • Подача топлива
  • Рейка и шестерня

Насос распределительного вала используется для приведения в действие плунжера с целью сжатия топлива.Бочка с топливом — это место для хранения топлива, которое будет прижиматься к форсунке.

Это конфигурация, плунжер расположен над распределительным валом, а топливный цилиндр расположен над плунжером.

Рейка и шестерня — это механизм для регулирования количества топлива в топливной бочке. Этот механизм будет регулировать обороты дизельного двигателя.

Подача топлива представляет собой дверь входа-выхода топлива, имеется три входа подачи топлива
входной канал, используемый как вход топлива из бака в выходной канал насоса
, используемый как выход топлива в инжектор в условиях высокого давления
возвратный канал используется для слива оставшегося топлива, которое не вдавливается в форсунку

А как это работает?

1.Внешний механизм ТНВД

Как правило, это мини-насос, который используется для перекачки топлива из бака в ТНВД. Этот насос работает механически, то есть приводится в действие коленчатым валом двигателя.

Итак, чтобы запустить поток топлива, нам нужно провернуть двигатель.


Когда коленчатый вал вращается, мини-насос будет отправлять дизельное топливо из бака в топливный насос через впускной канал. Из входного патрубка топливо напрямую заполняет топливную бочку, и она готова к прессованию.

2. Механизм ТНВД

Распределительный вал насоса соединен с коленчатым валом двигателя, поэтому при автоматическом проворачивании двигателя распредвал насоса вращается.


Это вращение переместит плунжер, так что плунжер будет прижат вверх, и в результате топливо, которое уже находится в топливной бочке, сжимается под высоким давлением и поступает в инжектор.

Когда кулачок закончил нажимать на плунжер, плунжер возвращается в нижнее положение. Это приведет к повторному открытию камеры топливного бочонка, так что топливо из впускного патрубка заполнит топливный бочонок напрямую.

3. Механизм установки оборотов двигателя

Регулировка числа оборотов двигателя на обычном дизельном топливе осуществляется путем регулировки количества топлива, впрыскиваемого форсункой.

В данном случае регулятор находится в топливной бочке. Количество топлива в бочке с горючим при нажатии влияет на частоту вращения двигателя.

это задача зубчатой ​​рейки. Эти два компонента будут регулировать количество топлива в топливной бочке, регулируя утилизацию топлива через возвратную подачу.

Количество топлива меньше (низкие обороты)

Количество топлива больше (высокие обороты)

Таким образом, от топливной бочки имеется промежуточный топливный тракт, ведущий к обратной подаче.

Этот путь сделан с определенным уклоном, так что, когда угол плунжера поворачивается, это влияет на количество топлива, содержащегося в топливной бочке

Для большей ясности вы можете увидеть картинку (вид сбоку)

а. при низких оборотах

Количество сжатого топлива меньше, поэтому угол плунжера можно увидеть на картинке.

2. при высоких оборотах

Количество запрессованного топлива больше, поэтому угол плунжера виден на картинке.


Принцип действия дизельного топливного насоса

Топливный насос высокого давления имеет три типа: рядный, распределительный и монококовый. Независимо от того, что это за продукция, самая важная часть — это насос. Количество, давление и время работы топливного насоса должны быть очень точными и автоматически регулироваться в зависимости от нагрузки.Топливный насос высокого давления — это такая деталь, которая требует тонкого и сложного производственного процесса. В настоящее время топливные насосы для дизельных двигателей общего назначения в стране и за рубежом производятся на нескольких мировых профессиональных заводах.

Принцип работы

Ознакомиться с принципом работы насосов с корпусом рядного ТНВД.

Источник питания необходим при работе ТНВД. Кулачковые диски в нижних частях насосов приводятся в движение шестернями коленчатого вала двигателей.

Плунжер — ключевой компонент топливного насоса высокого давления. Если использовать метафору медицинских инжекторов, то съемная заглушка похожа на поршень, а цилиндр можно назвать втулкой поршня. Собираем пружину внутри цилиндра на одной стороне плунжера, поэтому другая сторона будет касаться распредвала. Плунжеры будут перемещаться вверх и вниз внутри втулок плунжера каждый раз, когда распределительные валы совершают один оборот. Это основное движение плунжера топливного насоса высокого давления.

Плунжеры и втулки плунжера — очень точные детали. На корпусе плунжера имеется наклонный паз, а на втулке плунжера — присос. Всасывающий патрубок заполнен дизельным топливом. Дизельное топливо поступает во втулку плунжера, когда наклонный паз плунжера находится на всасывании. Таким образом, распределительный вал толкает плунжер выше. Когда он достигнет определенной высоты, наклонный паз отклонится от всасывающего устройства, и оно закроется. В этой ситуации дизельное топливо больше не может двигаться, пока плунжер поднимается выше и сжимает дизельное топливо.Когда давление топлива достигает определенного диапазона, открывается односторонний клапан. Таким образом, топливо будет проходить через форсунку для впрыска топлива и попадать в камеру сгорания цилиндра.

Следует отметить, что все дизельные двигатели оснащены впускными и обратными маслопроводами. Понять функцию впускного патрубка несложно, но как насчет возвратного маслопровода? Это связано с тем, что в цилиндр поступает только часть дизельного топлива, несмотря на то, что некоторое количество дизельного топлива выгружается плунжерами.Остальное сливается через отверстие для возврата масла. Более того, двигатель регулирует количество впрыскиваемого топлива путем регулирования количества сливаемого топлива.

Плунжер переместится вниз после достижения самой верхней точки. Затем наклонная прорезь снова встретится с отсосом, и дизельное топливо будет всасываться в плунжерную втулку. Начинается новый цикл. Каждая плунжерная система рядного ТНВД соответствует одному цилиндру. В рядном ТНВД имеется четыре цилиндра, для которых требуется всего четырехплунжерная система.Это позволяет предлагать товары большого размера. Обычно они используются в автомобилях среднего или большего размера. Например, в дизельных двигателях автобусов и грузовиков обычно используются рядные ТНВД.

Топливные насосы, применяемые в дизельных двигателях легковых и легких транспортных средств, в основном распределительного типа. Они отличаются небольшими размерами, малым весом, меньшим количеством компонентов и простой конструкцией. В этом типе насосов используется один или два комплекта (-ов) плунжерной системы для сжатия дизельного топлива и его проталкивания в топливные форсунки.

На крыльчатке установлены две группы плунжеров. Плунжеры вращаются вместе с крыльчатками при приводе от двигателей. Выпуклая часть кулачкового кольца прижимает плунжер и заставляет его играть роль насоса для подачи дизельного топлива в масляное отверстие в середине рабочего колеса. В это время дизельное топливо остается на входах распределителей и последовательно распыляется.

Поскольку обороты двух групп плунжерной системы (или одной группы плунжерной системы) пропорциональны увеличению количества цилиндров, ТНВД ограничивается количеством цилиндров и максимальной скоростью вращения.

С развитием технологии дизельных двигателей, теперь он популярен с одним из видов топливных насосов мономерного типа (так называемый мономерный насос или сопло насоса). Фактически, он объединяет вышеупомянутые два типа ТНВД в один тип. Впрыск топлива в каждый цилиндр завершается их соответствующим независимым блоком впрыска (мономерный насос или сопло насоса).

Компоненты системы впрыска топлива

Компоненты системы впрыска топлива

Ханну Яэскеляйнен, Магди К.Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Систему впрыска топлива можно разделить на стороны низкого и высокого давления. Компоненты низкого давления включают топливный бак, топливный насос и топливный фильтр. Компоненты стороны высокого давления включают насос высокого давления, аккумулятор, топливную форсунку и форсунку топливной форсунки. Для использования с различными типами систем впрыска топлива было разработано несколько конструкций форсунок и различные методы приведения в действие.

Компоненты стороны низкого давления

Обзор

Чтобы система впрыска топлива выполняла свое предназначение, топливо должно подаваться в нее из топливного бака. Это роль компонентов топливной системы низкого давления. Сторона низкого давления топливной системы состоит из ряда компонентов, включая топливный бак, один или несколько насосов подачи топлива и один или несколько топливных фильтров.Кроме того, многие топливные системы содержат охладители и / или нагреватели для лучшего контроля температуры топлива. На рисунке 1 показаны два примера схем топливных систем низкого давления: один для грузовика с дизельным двигателем большой грузоподъемности и один для легкового легкового автомобиля с дизельным двигателем [1590] [1814] .

Рисунок 1 . Примеры топливных систем низкого давления для тяжелых и легких дизельных транспортных средств

Топливный бак и топливный насос

Топливный бак — это резервуар, в котором хранится запас топлива и который помогает поддерживать его температуру на уровне ниже точки воспламенения. Топливный бак также служит важным средством отвода тепла от топлива, которое возвращается из двигателя [528] . Топливный бак должен быть коррозионно-стойким и герметичным при давлении не менее 30 кПа. Он также должен использовать некоторые средства для предотвращения чрезмерного накопления давления, такие как выпускной или предохранительный клапан.

Насос подачи топлива, часто называемый подъемным насосом, отвечает за всасывание топлива из бака и его подачу в насос высокого давления. Современные топливные насосы могут приводиться в действие электрическим или механическим приводом от двигателя.Использование топливного насоса с электрическим приводом позволяет размещать насос в любом месте топливной системы, в том числе внутри топливного бака. Насосы, приводимые в действие двигателем, прикреплены к двигателю. Некоторые топливные насосы могут быть включены в блоки, выполняющие другие функции. Например, так называемые тандемные насосы представляют собой агрегаты, в состав которых входят топливный насос и вакуумный насос для усилителя тормозов. Некоторые топливные системы, например, на основе насоса распределительного типа, включают в себя подающий насос с механическим приводом и насос высокого давления в одном блоке.

Топливные насосы обычно рассчитаны на подачу большего количества топлива, чем потребляется двигателем в любой конкретной операционной системе. Этот дополнительный поток топлива может выполнять ряд важных функций, включая подачу дополнительного топлива для охлаждения форсунок, насосов и других компонентов двигателя и поддержание более постоянной температуры топлива во всей топливной системе. Кроме того, избыточное топливо, которое нагревается при контакте с горячими компонентами двигателя, может быть возвращено в бак или топливный фильтр для улучшения работоспособности автомобиля при низких температурах.

Топливный фильтр

Безотказная работа дизельной системы впрыска возможна только на фильтрованном топливе. Топливные фильтры помогают уменьшить повреждение и преждевременный износ от загрязнений, задерживая очень мелкие частицы и воду, чтобы предотвратить их попадание в систему впрыска топлива. Как показано на рисунке 1, топливные системы могут содержать одну или несколько ступеней фильтрации. Во многих случаях экран курса также расположен на входе топлива, расположенном в топливном баке.

В двухступенчатой ​​системе фильтрации обычно используется первичный фильтр на впускной стороне топливоперекачивающего насоса и вторичный фильтр на выпускной стороне.Фильтр предварительной очистки требуется для удаления более крупных частиц. Вторичный фильтр необходим, чтобы выдерживать более высокое давление и удалять более мелкие частицы, которые могут повредить компоненты двигателя. Одноступенчатые системы удаляют более крупные и мелкие частицы с помощью одного фильтра.

Фильтры могут быть коробчатого типа или сменного элемента, как показано на рисунке 2. Фильтр коробчатого типа может быть полностью заменен при необходимости и не требует очистки. Фильтры со сменным элементом должны быть тщательно очищены при замене элементов и должны быть приняты меры, чтобы избежать любых остатков грязи, которые могут мигрировать на сложные части системы впрыска топлива. Фильтры могут быть изготовлены из металла или пластика.

Рисунок 2 . Два типа топливных фильтров

(а) Коробчатого типа; (b) Тип элемента

Обычными материалами для современных топливных фильтрующих элементов являются синтетические волокна и / или целлюлоза. Также можно использовать микроволокна, но из-за риска миграции мелких кусочков стекловолокна, отколовшихся от основного элемента, в критические компоненты топливной системы, их использование в некоторых приложениях избегается [2046] . В прошлом также использовались гофрированная бумага, упакованная хлопковая нить, древесная щепа, смесь упакованной хлопковой нити и древесных волокон и намотанный хлопок [529] .

Требуемая степень фильтрации зависит от конкретного применения. Обычно, когда два фильтра используются последовательно, первичный фильтр задерживает частицы размером примерно 10–30 мкм, в то время как вторичный фильтр способен задерживать частицы размером более 2–10 мкм. По мере развития топливных систем зазоры и нагрузки на компоненты высокого давления увеличиваются, и потребность в чистом топливе становится все более острой. Как способность топливных фильтров удовлетворять потребности в более чистом топливе [2047] , так и методы количественной оценки приемлемых уровней загрязнения топлива потребовались для развития [2048] .

Помимо предотвращения попадания твердых частиц в оборудование для подачи топлива и впрыска, необходимо также предотвратить попадание воды в топливе в критические компоненты системы впрыска топлива. Свободная вода может повредить смазываемые топливом компоненты системы впрыска топлива. Вода также может замерзнуть в условиях низких температур, а лед может заблокировать небольшие проходы системы впрыска топлива, перекрывая подачу топлива к остальной части системы впрыска топлива.

Воду можно удалить из топлива двумя способами.Поступающее топливо может подвергаться центробежным силам, которые отделяют более плотную воду от топлива. Гораздо более высокая эффективность удаления может быть достигнута с помощью фильтрующего материала, который отделяет воду. На рис. 3 показан фильтр, использующий комбинацию средового и центробежного подходов.

Рисунок 3 . Топливный фильтр с водоотделителем

Различные среды разделения воды работают по разным принципам. Гидрофобная барьерная среда , такая как обработанная силиконом целлюлоза, отталкивает воду и заставляет ее скатываться вверх по поверхности.По мере того как бусинки становятся больше, они под действием силы тяжести стекают по лицевой стороне элемента в чашу. Гидрофильная коалесцирующая среда , такая как стеклянное микроволокно, обладает высоким сродством к воде. Вода в топливе связывается со стеклянными волокнами, и со временем по мере того, как больше воды поступает со стороны выше по потоку, образуются массивные капли. Вода проходит через фильтр с топливом и на выходе из потока топлива выпадает в сборный стакан.

Более широкое использование поверхностно-активных добавок к топливу и компонентов топлива, таких как биодизель, сделало обычные разделяющие среды менее эффективными, и производителям фильтров пришлось разработать новые подходы, такие как композитные среды и коалесцирующие среды со сверхвысокой площадью поверхности [2049] [2050] [2051] . Также были затронуты методы количественной оценки эффективности отделения топлива от воды [2052] .

Топливные фильтры также могут содержать дополнительные элементы, такие как подогреватели топлива, тепловые переключающие клапаны, деаэраторы, датчики воды в топливе, индикаторы замены фильтров.

Подогреватель топлива помогает минимизировать накопление кристаллов парафина, которые могут образовываться в топливе при его охлаждении до низких температур. В обычных методах нагрева используются электрические нагреватели, охлаждающая жидкость двигателя или рециркулируемое топливо. На рисунке 1 показаны два подхода, в которых для нагрева поступающего топлива используется теплое возвращаемое топливо.

Перелив топлива и утечка топлива, возвращающегося в бак, также переносят воздух и пары топлива. Присутствие газообразных веществ в топливе может вызвать затруднения при запуске, а также нормальную работу двигателя в условиях высоких температур. Таким образом, выпускные клапаны и деаэраторы используются для удаления паров и воздуха из системы подачи топлива и обеспечения бесперебойной работы двигателя.

###

ТНВД с вращающимся распределителем (Патент)

Клопфер, К. Х., Дорджевич, И., Хиггинс, М. К., и Зальцгебер, Д. Э. ТНВД с поворотным распределителем . США: Н. П., 1993. Интернет.

Клопфер, К. Х., Дорджевич, И., Хиггинс, М. К., и Зальцгебер, Д. Е. Топливный насос с роторным распределителем . Соединенные Штаты.

Клопфер, К. Х., Дорджевич, И., Хиггинс, М. К., и Зальцгебер, Д. Э.Вт. «ТНВД с роторным распределителем». Соединенные Штаты.

@article {osti_6312859,
title = {ТНВД с вращающимся распределителем},
author = {Клопфер, К. Х. и Дорджевич, И. и Хиггинс, М. С, и Зальцгебер, Д. Э},
abstractNote = {В топливном насосе для впрыска топлива, имеющем корпус насоса и ротор распределителя, выровненные соосно, описан корпус насоса, имеющий насосную камеру, образованную кольцевым расположением отверстий подкачивающего плунжера с осями, проходящими, как правило, радиально наружу от оси ротора распределителя , насосный плунжер, установленный в каждом отверстии плунжера для возвратно-поступательного движения, кольцевые кулачковые средства, окружающие кольцевую конструкцию плунжерных отверстий для возвратно-поступательного движения насосных плунжеров, чтобы обеспечить их чередующиеся ходы всасывания и нагнетания для соответственно подачи всасываемых зарядов топлива в камеру нагнетания и создания высокого давления заправки топлива из насосной камеры для впрыска топлива, распределительная головка с множеством выпускных отверстий распределителя, при этом ротор распределителя установлен с возможностью вращения в распределительной головке для распределения заправок топлива высокого давления к выпускным отверстиям распределителя; усовершенствование, заключающееся в том, что корпус насоса и ротор распределителя имеют центральное коаксиальное отверстие, проходящее через него и обеспечивающее отверстие клапана, пересекающее кольцевое расположение плунжерных отверстий, причем корпус насоса обеспечивает кольцевое седло клапана вокруг центрального отверстия между одним его концом, удаленным от распределителя ротор и пересечение отверстия клапана и кольцевого расположения отверстий плунжера, удлиненный элемент клапана, установленный в канале клапана, имеющий уплотняющую головку на одном конце, входящую в зацепление с кольцевым седлом клапана и проходящую от уплотняющей головки к другому концу центральный канал, камера подачи топлива, соединенная с одним концом центрального канала для подачи топлива в насосную камеру, средство приведения в действие клапана, содержащее электромагнит на другом конце элемента клапана от уплотняющей головки и работающее при подаче напряжения для смещения клапана элемент в одном осевом направлении в одно из его положений и средство для смещения клапанного элемента в противоположном направлении. осевое направление его в другое положение, когда электромагнит обесточен.},
doi = {},
url = {https://www.osti.gov/biblio/6312859}, журнал = {},
номер =,
объем =,
place = {United States},
год = {1993},
месяц = ​​{7}
}

ZOIL | Основы дизельной топливной системы


Функция дизельной топливной системы заключается в том, чтобы впрыскивать точное количество распыленного топлива под давлением в каждый цилиндр двигателя в нужное время.Возгорание в дизельном двигателе происходит, когда поток топлива смешивается с горячим сжатым воздухом. (В бензиновом двигателе не используются электрические искры.)

Топливная система состоит из следующих компонентов.

Есть много разных типов и форм топливных баков. Каждый размер и форма предназначены для определенной цели. Топливный бак должен вмещать достаточно топлива для работы двигателя в течение разумного периода времени. Бак должен быть закрыт, чтобы предотвратить попадание посторонних предметов.Он также должен быть провентилирован, чтобы позволить воздуху поступать, заменяя любое топливо, требуемое двигателем. Требуются еще три отверстия в баке: одно для заполнения, одно для слива и одно для слива.

Есть три типа дизельных топливопроводов. К ним относятся тяжелые трубопроводы для высоких давлений между ТНВД и форсунками, трубопроводы среднего веса для легких или средних давлений топлива между топливным баком и ТНВД, а также легкие трубопроводы с низким давлением или без него.

Дизельное топливо необходимо фильтровать не один раз, а несколько раз в большинстве систем. Типичная система может иметь три ступени прогрессивных фильтров — сетку фильтра в баке или перекачивающем насосе, первичный топливный фильтр и вторичный топливный фильтр. В последовательных фильтрах все топливо проходит через один фильтр, а затем через другой. В параллельных фильтрах часть топлива проходит через каждый фильтр.

Для получения дополнительной информации о топливных фильтрах см. Основные сведения о дизельных топливных фильтрах.

В простых топливных системах для подачи топлива из бака в топливный насос используется сила тяжести или давление воздуха.На современных быстроходных дизельных двигателях обычно используется топливный насос. Этот насос, приводимый в действие двигателем, автоматически подает топливо в систему впрыска дизельного топлива. Насос часто имеет ручной рычаг подкачки для удаления воздуха из системы. Современные ТНВД — это почти все толкательные насосы, которые используют плунжерный и кулачковый метод впрыска топлива.

Есть четыре основных системы впрыска топлива:

1. Отдельный насос и форсунка для каждого цилиндра

2.Комбинированный насос и форсунка для каждого цилиндра ( насос-форсунка тип )

3. Один насос, обслуживающий форсунки на несколько цилиндров (распределитель тип )

4. Насосы в общем корпусе с форсунками на каждый цилиндр ( система common rail )

Система Common Rail быстро набирает популярность для применения на дорогах. Рядный и распределительный типы используются на внедорожниках и промышленных машинах.

Форсунки для дизельного топлива, пожалуй, самый важный компонент топливной системы. Работа форсунок — подавать точное количество распыленного топлива под давлением в каждый цилиндр. Сильно распыленное топливо под давлением, равномерно распределенное по цилиндру, приводит к увеличению мощности и экономии топлива, снижению шума двигателя и более плавной работе.

В современных форсунках дизельного топлива, например, в топливных системах Common Rail, используется пьезоэлектричество.Пьезоэлектрические форсунки чрезвычайно точны и могут выдерживать очень высокие давления, характерные для систем Common Rail.

Топливо, используемое в современных высокоскоростных дизельных двигателях, производится из более тяжелых остатков сырой нефти, которые остаются после удаления более летучих видов топлива, таких как бензин, в процессе переработки. Наиболее распространенный сорт дизельного топлива — это 2-D, более известный как дизельное топливо со сверхнизким содержанием серы (ULSD).

Для получения дополнительной информации о дизельном топливе см. Основные сведения о дизельном топливе со сверхнизким содержанием серы.

Распространенный враг дизельных топливных систем — вода. К сожалению, вода встречается в дизельном топливе чаще, чем думает большинство людей. Если вода попадет в систему впрыска, она быстро окислит компоненты черных металлов (стали). Некоторые из наиболее распространенных отказов, связанных с водой, включают:
• Захват компонента впрыска
• Заедание компонентов дозатора как в насосе, так и в инжекторе
• Отказ регулятора / компонента дозирования

Дизельная топливная система является критическим компонентом любого дизельного двигателя, и ее оптимальная работа важна для максимальной производительности.E-ZOIL производит несколько присадок, разработанных для решения общих проблем, с которыми сталкивается система дизельного топлива. Присадки E-ZOIL повышают смазывающую способность топливной системы и предотвращают преждевременный выход из строя топливных насосов и форсунок. Ознакомьтесь с нашей линейкой присадок для защиты вашего топлива и оборудования!

Как работает дизельный топливный насос?

Обновлено 9 ноября 2019 г.

Автор: Кевин Бек

Когда вы въезжаете на заправочную станцию ​​на автомобиле или грузовике, независимо от того, какое топливо использует автомобиль, вы не можете не заметить, что дизельное топливо почти всегда вариант.Если ваш собственный автомобиль работает на стандартном неэтилированном бензине, вы можете задаться вопросом, почему другие этого не делают. Что делает дизельное топливо особенным? Если у него «элитная» недвижимость, почему не все автомобили его используют?

Эти вопросы приводят к запросам, которые касаются не самого дизельного топлива, а в большей степени дизельного двигателя, а также того, почему разработка дизельного инжекторного насоса в конце 1800-х годов представляла собой технологический скачок вперед. Основная идея, которую следует иметь в виду, когда вы читаете, заключается в том, что дизельные двигатели используют физическое сжатие вместо фактической искры зажигания, чтобы их топливо было достаточно горячим для сгорания.

Чем отличаются дизельные двигатели?

Зажигание чего-либо, кипячение его или «закаливание» в микроволновой печи — очевидные способы увеличить теплосодержание этого предмета. Но не так интуитивно понятно, что резкое увеличение давления газа, не позволяя теплу проникать или уходить, может резко поднять температуру в камере.

В дизельном двигателе воздух сжимается примерно до 1/15 — 1/20 своего обычного объема непосредственно перед впрыском или закачкой дизельного топлива в двигатель.Топливно-воздушная смесь становится достаточно горячей для воспламенения, вызывая расширение цилиндра (поршня) в двигателе. Как и во время фазы сжатия воздуха, тепло не передается в двигатель и не выходит из него; это происходит только во время фазы выхлопа.

Дизельный топливный насос

Система впрыска топлива в дизельном двигателе состоит из топливного насоса , топливопровода и форсунки (также называемой инжектором). Когда воздух сжимается, давление внутри цилиндра ненадолго повышается до 400-600 фунтов на квадратный дюйм (нормальное атмосферное давление составляет менее 15 фунтов на квадратный дюйм), в результате чего внутренняя температура достигает диапазона от 800 градусов по Фаренгейту до 1200 F (от 430 градусов по Цельсию до 650 С).

Дизельный двигатель имеет те же циклы и физическое устройство, что и бензиновый двигатель; их отличает процесс воспламенения, а не структура. В целом они более надежны, производят больше энергии на килограмм топлива и в целом более эффективны; дизельное топливо также менее опасно для возгорания.

Дизельные двигатели действительно имеют недостатки по сравнению с их обычными бензиновыми аналогами. Они должны иметь более прочную конструкцию из-за высокого давления, возникающего во время фазы сжатия воздуха, что представляет собой как техническую проблему, так и более дорогостоящий продукт. Кроме того, высокое давление может затруднить запуск дизельных двигателей.

Цикл дизельного двигателя

В дизельном двигателе выполняется четырехступенчатый цикл для завершения одного движения сжатия-расширения поршня. Первый из них — это этап сжатия воздуха; поскольку такое же количество тепла сохраняется в быстро сжимающемся пространстве, это увеличивает давление и температуру. Во второй фазе (зажигания) давление остается постоянным, поскольку объем начинает увеличиваться.

Во время третьей фазы, называемой рабочим ходом, объем и давление уменьшаются по мере того, как двигатель работает , в конечном итоге приводя в движение автомобиль.Наконец, в фазе выпуска объем остается постоянным на самом высоком уровне, а затем цикл начинается заново, когда воздух всасывается для сжатия в первой фазе.

Дизельное топливо

Топливо для дизельных двигателей тяжелее бензина, поскольку оно производится из остатков сырой нефти, а не из более летучих побочных продуктов, которые приводят к образованию бензина. Как и обычный газ, он бывает разных марок, которые можно адаптировать к потребностям конкретных двигателей.

Использование неподходящего дизельного топлива может вызвать проблемы в работе: от плохого запуска до «стука и звона» до чрезмерно задымленного выхлопа.

Дизельные топливные насосы — Топливный насос

Фото 2/5 | Дизельные нагнетательные насосы, боковой угол

Топливный насос высокого давления — это сердце дизельного двигателя. Точно поданное топливо поддерживает ритм или синхронизацию, которые обеспечивают плавную работу двигателя. Одновременно насос также контролирует количество топлива, необходимое для получения желаемой мощности.ТНВД выполняет работу как дроссельной заслонки, так и системы зажигания, необходимых в бензиновых двигателях. При поиске неисправностей бензинового двигателя вы проверяете компрессию, топливо и искру. У дизеля нет системы зажигания, поэтому с ним на одну ошибку меньше. Основные достижения в разработке дизельного двигателя являются прямым результатом улучшенного впрыска топлива. Вот как работает ТНВД.

Насосы с линейным впрыском (рывками)
Первые насосы, в которых для подачи дозированного топлива в камеру сгорания использовались поршни, были разработаны еще в 1890-х годах.На это ушло почти сорок лет, но в 1927 году компания Bosch представила серийный линейный насос с спиральным управлением. Эти первые насосы очень похожи на Bosch P7100 (P-pump) на двигателях Dodge Ram 5.9L Cummins ’94 — ’98. Иногда их называют толчковыми насосами. Они состоят из отдельных насосов и плунжеров, соединенных в линию, по одному на цилиндр. Они активируются кулачком, который механически связан с двигателем. Тем не менее, насос может изменять время, хотя и не до такой степени, как система с электронным управлением.Рядные ТНВД выглядят как рядные мини-двигатели. Первые рядные ТНВД обеспечивали давление впрыска от 3000 до 5000 фунтов на квадратный дюйм, в то время как новый Bosch P7100, установленный на двигателях Cummins ’94 — 981/2, обеспечивает давление 18000 фунтов на квадратный дюйм.

Распределительные (роторные) впрыскивающие насосы
Эти типы насосов имеют только один дозатор топлива. Вращающийся ротор обеспечивает гидравлическое соединение с различными портами на распределительной головке, что отчасти похоже на то, как распределитель работает на бензиновом двигателе.Преимущества роторного насоса только с одним плунжером в том, что все порции топлива абсолютно одинаковы, что позволяет уменьшить габаритные размеры. Кроме того, насосы распределительного типа имеют меньше движущихся частей по сравнению с линейными насосами. Двумя примерами механических ротационных насосов являются Stanadyne DB2 и Bosch VE. Stanadyne DB2 создает давление 6700 фунтов на квадратный дюйм, а Bosch VE — 17000 фунтов на квадратный дюйм.

Примером электронного ротационного насоса является Bosch VP44, способный создавать давление 23 000 фунтов на квадратный дюйм.Это самый умный насос с наибольшей ответственностью — даже по сравнению с новыми насосами Common Rail CP3. Это так, потому что все, что нужно сделать CP3, — это создать давление. Помимо создания давления, VP44 необходимо электронно контролировать время и количество топлива, подаваемого в двигатель.

Система впрыска Common-Rail
При системе впрыска Common-Rail сам насос потерял большую часть своих полномочий решать, когда и в каком количестве подавать топливо под давлением.Например, насос CP3 получает топливо из топливного бака. Затем он использует радиально-поршневую конструкцию для значительного увеличения давления. Топливо под высоким давлением отправляется в общую топливную рампу, которая в основном является аккумулятором для форсунок. Форсунки вступят в силу оттуда.

Насос-форсунки
Линии, соединяющие ТНВД с топливной форсункой, вызвали проблемы у первых инженеров-дизелей. Поэтому в 1905 году Карл Вайдман избавился от них, соединив впрыскивающий насос и инжектор.Насос-форсунка представляет собой компактную конструкцию с впрыском топлива, в которой плунжер насоса создает высокое давление за счет механической силы, прилагаемой двигателем. Плунжер и форсунка сливаются в одно целое, задача которого — подавать распыленное топливо в камеру сгорания. Чаще всего насос-форсунки используются в двигателях Volkswagen и больших дизельных двигателях. DP

Интересные факты о впрыске топлива
* Первые дизельные двигатели использовали сжатый воздух для подачи топлива в камеру сгорания.Это технология, оставшаяся после экспериментов с угольной пылью.

* Компания Atlas Imperial Diesel из Окленда, Калифорния, разработала свою первую топливную систему Common Rail еще в 1919 году.

* Основной проблемой для систем впрыска топлива является отсутствие подтекания в конце впрыска. Даже небольшая дополнительная капля нарушит цикл сгорания.

* В современных дизельных двигателях топливо выходит из форсунки под давлением 30 000 фунтов на квадратный дюйм. Для сравнения, это число укладывается в диапазон давлений, в которых работают гидрорезки.Watejets использует высокое давление h30 для резки многих различных материалов, включая пластик, дерево, сталь и алюминий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *